
homalg
A homological algebra meta-package for

computable Abelian categories

Version 2017.10.26

September 2015

Mohamed Barakat

Markus Lange-Hegermann

(this manual is still under construction)

This manual is best viewed as an HTML document. The latest version
is available ONLINE at:

http://homalg.math.rwth-aachen.de/~barakat/homalg-project/homalg/chap0.html

An OFFLINE version should be included in the documentation subfolder
of the package. This package is part of the homalg-project:

http://homalg.math.rwth-aachen.de/index.php/core-packages/homalg-package

http://homalg.math.rwth-aachen.de/~barakat/homalg-project/homalg/chap0.html
http://homalg.math.rwth-aachen.de/index.php/core-packages/homalg-package

homalg 2

Mohamed Barakat
Email: barakat@mathematik.uni-kl.de
Homepage: http://www.mathematik.uni-kl.de/~barakat/
Address: Department of Mathematics,

University of Kaiserslautern,
67653 Kaiserslautern,
Germany

Markus Lange-Hegermann
Email: markus.lange.hegermann@rwth-aachen.de
Homepage: http://wwwb.math.rwth-aachen.de/~markus
Address: Lehrstuhl B für Mathematik, RWTH Aachen, Templer-

graben 64, 52056 Aachen, Germany

mailto://barakat@mathematik.uni-kl.de
http://www.mathematik.uni-kl.de/~barakat/
mailto://markus.lange.hegermann@rwth-aachen.de
http://wwwb.math.rwth-aachen.de/~markus

homalg 2

Copyright
© 2007-2015 by Mohamed Barakat and Markus Lange-Hegermann

This package may be distributed under the terms and conditions of the GNU Public License Version 2.

Acknowledgements
Max Neunhöffer not only taught me the philosophy of object-oriented programming in GAP4, but also to what
extent this philosophy is still unique among programming languages (→ B.2). The slides (in German) to his
talk in our seminar on 30.10.2006 can be found on his homepage.

He, Frank Lübeck, and Thomas Breuer patiently answered trillions of specific questions, even those I was
too lazy to look up in the excellent reference manual. Without their continuous and tireless help and advice, not
only this package but the as a whole homalg project would have remained on my todo list.

A lot of ideas that make up this package and the whole homalg project came out of intensive discussions
with Daniel Robertz during our early collaboration, where we developed our philosophy of a meta package for
homological algebra and implemented it in Maple.

In the fall of 2007 I began collaborating with Simon Görtzen to further pursue and extend these ideas
preparing the transition to GAP4. With his help homalg became an extendable multi-package project.

Max Neunhöffer convinced me to use his wonderful IO package to start communicating with external
computer algebra systems. This was crucial to remedy the yet missing support for important rings in GAP. Max
provided the first piece of code to access the computer algebra system Singular. This was the starting point
of the packages HomalgToCAS and IO_ForHomalg, which were further abstracted by Simon and myself
enabling homalg to communicate with virtually any external (computer algebra) system.

Thomas Bächler wrote the package MapleForHomalg to directly access Maple via its C-interface. It
offers an alternative to the package IO_ForHomalg, which requires Maple’s terminal interface cmaple.

The basic support for Sage was added by Simon, and the support for Singular was initiated by Markus
Lange-Hegermann and continued by him and Simon, while Markus Kirschmer contributed the complete support
for MAGMA. This formed the beginning of the RingsForHomalg package. Recently, Daniel added the support
for Macaulay2.

My concerns about how to handle the garbage collection in the external computer algebra systems were
evaporated with the idea of Thomas Breuer using the so-called weak pointers in GAP4 to keep track of all the
external objects that became obsolete for homalg. This idea took shape in a discussion with him and Frank
Lübeck and finally found its way into the package HomalgToCAS.

My gratitude to all with whom I worked together to develop extension packages and those who devel-
oped their own packages within the homalg project (→ Appendix E). Without their contributions the package
homalg would have remained a core without a body:

• Thomas Bächler

• Barbara Bremer

• Thomas Breuer

• Anna Fabiańska

• Simon Görtzen

• Markus Kirschmer

• Markus Lange-Hegermann

• Frank Lübeck

• Max Neunhöffer

http://www-groups.mcs.st-and.ac.uk/~neunhoef/
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Publications/talks.html
http://www.math.rwth-aachen.de/~Frank.Luebeck/
http://www.math.rwth-aachen.de/~Thomas.Breuer/
http://www.gap-system.org/Manuals/doc/ref/chap0.html
http://homalg.math.rwth-aachen.de/
http://wwwb.math.rwth-aachen.de/~daniel/
http://homalg.math.rwth-aachen.de/maple/
http://wwwb.math.rwth-aachen.de/goertzen/
http://wwwb.math.rwth-aachen.de/~thomas/
http://wwwb.math.rwth-aachen.de/~markus/
http://wwwb.math.rwth-aachen.de/~markus/
http://www.math.rwth-aachen.de/~Markus.Kirschmer/
http://www.gap-system.org/Manuals/doc/ref/chap86.html
http://wwwb.math.rwth-aachen.de/~thomas/
http://www.math.rwth-aachen.de/~Thomas.Breuer/
http://wwwb.math.rwth-aachen.de/goertzen/
http://www.math.rwth-aachen.de/~Markus.Kirschmer/
http://wwwb.math.rwth-aachen.de/~markus/
http://www.math.rwth-aachen.de/~Frank.Luebeck/
http://www-groups.mcs.st-and.ac.uk/~neunhoef/

homalg 3

• Daniel Robertz

I would also like to thank Alban Quadrat for supporting the homalg project and for all the wonderful discussions
we had. At several places in the code I was happy to add the comment: “I learned this from Alban”.

My teacher Wilhelm Plesken remains an inexhaustible source of extremely broad and deep knowledge.
Thank you for being such a magnificent person.

This manual was created using the GAPDoc package of Max Neunhöffer and Frank Lübeck.
Last but not least, thanks to Miriam, Josef, Jonas, and Irene for the endless love and support.
Mohamed Barakat

http://wwwb.math.rwth-aachen.de/~daniel/
http://www-sop.inria.fr/members/Alban.Quadrat/
http://wwwb.math.rwth-aachen.de/Mitarbeiter/plesken.php

Contents

1 Introduction 7
1.1 What is the role of the homalg package in the homalg project? 7
1.2 This manual . 9

2 Installation of the homalg Package 10

3 Objects 11
3.1 Objects: Category and Representations . 11
3.2 Objects: Constructors . 13
3.3 Objects: Properties . 13
3.4 Objects: Attributes . 15
3.5 Objects: Operations and Functions . 18

4 Morphisms 21
4.1 Morphisms: Categories and Representations . 21
4.2 Morphisms: Constructors . 22
4.3 Morphisms: Properties . 22
4.4 Morphisms: Attributes . 24
4.5 Morphisms: Operations and Functions . 26

5 Elements 28
5.1 Elements: Category and Representations . 28
5.2 Elements: Constructors . 28
5.3 Elements: Properties . 28
5.4 Elements: Attributes . 29
5.5 Elements: Operations and Functions . 29

6 Complexes 31
6.1 Complexes: Category and Representations . 31
6.2 Complexes: Constructors . 31
6.3 Complexes: Properties . 34
6.4 Complexes: Attributes . 35
6.5 Complexes: Operations and Functions . 36

7 Chain Morphisms 40
7.1 ChainMorphisms: Categories and Representations 40
7.2 Chain Morphisms: Constructors . 41

4

homalg 5

7.3 Chain Morphisms: Properties . 42
7.4 Chain Morphisms: Attributes . 44
7.5 Chain Morphisms: Operations and Functions . 44

8 Bicomplexes 45
8.1 Bicomplexes: Category and Representations . 45
8.2 Bicomplexes: Constructors . 46
8.3 Bicomplexes: Properties . 47
8.4 Bicomplexes: Attributes . 47
8.5 Bicomplexes: Operations and Functions . 47

9 Bigraded Objects 49
9.1 BigradedObjects: Categories and Representations 49
9.2 Bigraded Objects: Constructors . 50
9.3 Bigraded Objects: Properties . 53
9.4 Bigraded Objects: Operations and Functions . 53

10 Spectral Sequences 54
10.1 SpectralSequences: Categorie and Representations 54
10.2 Spectral Sequences: Constructors . 55
10.3 Spectral Sequences: Attributes . 57
10.4 Spectral Sequences: Operations and Functions . 57

11 Functors 59
11.1 Functors: Category and Representations . 60
11.2 Functors: Constructors . 60
11.3 Functors: Attributes . 63
11.4 Basic Functors . 65
11.5 Tool Functors . 66
11.6 Other Functors . 66
11.7 Functors: Operations and Functions . 66

12 Examples 68
12.1 ExtExt . 68
12.2 Purity . 69
12.3 TorExt-Grothendieck . 71
12.4 TorExt . 73

A The Mathematical Idea behind homalg 75

B Development 76
B.1 Why was homalg discontinued in Maple? . 76
B.2 Why GAP4? . 76
B.3 Why not Sage? . 78
B.4 How does homalg compare to Sage? . 78

http://www.maplesoft.com/
http://www.gap-system.org/
http://www.sagemath.org/

homalg 6

C Logic Subpackages 80
C.1 LIOBJ: Logical Implications for Objects of Abelian Categories 80
C.2 LIMOR: Logical Implications for Morphisms of Abelian Categories 80
C.3 LICPX: Logical Implications for Complexes in Abelian Categories 80

D Debugging homalg 81
D.1 Increase the assertion level . 81

E The Core Packages and the Idea behind their Splitting 82
E.1 The 6=2+4 split . 82
E.2 The 4=1+1+1+1 split . 83

F Overview of the homalg Package Source Code 85
F.1 The Basic Objects . 86
F.2 The High Level Homological Algorithms . 87
F.3 Logical Implications for homalg Objects . 87

References 88

Index 89

Chapter 1

Introduction

1.1 What is the role of the homalg package in the homalg project?

1.1.1 Philosophy

The package homalg is meant to be the first part of a continuously growing open source multi volume
book about homological and homotopical algebra. homalg is an attempt to translate as much as possi-
ble of homological algebra, as can be found in books like [CE99], [ML63], [HS97], [Rot79], [Wei94],
and [GM03], into a language that a computer can directly understand. But just like the aforemen-
tioned books, homalg should, to a great extent, be readable by a mathematician, even without deep
programming knowledge. For the reasons mentioned in (→ Appendix B.2) GAP4 was chosen as the
language of homalg.

1.1.2 homalg provides ...

The package homalg is the foundational part of the project. It provides procedures to construct basic
objects in homological algebra:

• filtrations of objects

• complexes (of objects and of complexes)

• chain morphisms

• bicomplexes

• bigraded (differential) objects

• spectral sequences

• functors

Beside these so-called constructors homalg provides operations to perform computations with these
objects. The list of operations includes:

• computation of subfactor objects

• applying functors (like Ext, Tor, ...) to objects, morphisms, complexes and chain morphisms

7

http://www.opensource.org/
http://en.wikipedia.org/wiki/Homological_algebra
http://en.wikipedia.org/wiki/Homotopical_algebra

homalg 8

• derivation and composition of functors

• horse shoe resolution of short exact sequences of objects

• connecting homomorphisms and long exact sequences

• Cartan-Eilenberg resolution of complexes

• hyper (co)homology

• spectral sequences of bicomplexes

• the Grothendieck spectral sequences associated to two composable functors

• test if an object is torsion-free, reflexive, projective, stably free, pure

• determine the rank, grade, projective dimension, degree of torsion-freeness, and codegree of
purity of an object

Using the philosophy of GAP4, one or more methods are installed for each operation, depending on
properties and attributes of these objects. These properties and attributes can themselves be computed
by methods installed for this purpose.

1.1.3 Building upon the homalg package

As mentioned above, the package homalg should only be the first and foundational part of the homalg
project. On the one hand it is designed independently of the details of the different matrix operations,
which other packages are meant to provide. Typically, these packages (like RingsForHomalg) heav-
ily rely on existing, well tested, and optimized systems like Singular, Macaulay2, or MAGMA. On
the other hand other packages can be built upon or extend the homalg package in different ways:

• add constructors (sheaves, schemes, simplicial sets, ...)

• add methods for basic operation (Yoneda products, Massey products, Steenrod operations, ...)

• add methods to compute sheaf cohomology, local cohomology, Hochschild (co)homology,
cyclic (co)homology...

• provide algorithms for holonomic D-modules based on the restriction algorithm: localization,
computing tensor products, Hom, Ext, de Rham cohomology, ...

• support change of rings, Lyndon/Hochschild-Serre spectral sequence, base change spectral se-
quences, ...

• support perturbation techniques, Serre and Eilenberg-Moore spectral sequence of simplicial
spaces of infinite type, ...

• ...

The project will remain open and contributions are highly welcome. The different packages will be
attributed to their respective authors. The whole project will be attributed to the "homalg team", i.e.
the authors and contributers of all packages in the project.

homalg 9

1.2 This manual

Chapter 2 describes the installation of this package. The remaining chapters are each devoted to one
of the homalg objects (→ 1.1.2) with its constructors, properties, attributes, and operations.

Chapter 2

Installation of the homalg Package

To install this package just extract the package’s archive file to the GAP pkg directory.
By default the homalg package is not automatically loaded by GAP when it is installed. You

must load the package with

LoadPackage("homalg");

before its functions become available.
Please, send me an e-mail if you have any questions, remarks, suggestions, etc. concerning this

package. Also, I would be pleased to hear about applications of this package.

Mohamed Barakat

10

Chapter 3

Objects

3.1 Objects: Category and Representations

3.1.1 IsHomalgObject

. IsHomalgObject(F) (Category)

Returns: true or false
This is the super GAP-category which will include the GAP-categories IsHomalgStaticObject

(3.1.2), IsHomalgComplex (6.1.1), IsHomalgBicomplex (8.1.1), IsHomalgBigradedObject
(9.1.1), and IsHomalgSpectralSequence (10.1.1). We need this GAP-category to be able to build
complexes with *objects* being objects of homalg categories or again complexes.

Code
DeclareCategory("IsHomalgObject",

IsHomalgObjectOrMorphism and
IsStructureObjectOrObject and
IsAdditiveElementWithZero);

3.1.2 IsHomalgStaticObject

. IsHomalgStaticObject(F) (Category)

Returns: true or false
This is the super GAP-category which will include the GAP-categories IsHomalgModule, etc.

Code
DeclareCategory("IsHomalgStaticObject",

IsHomalgStaticObjectOrMorphism and
IsHomalgObject);

3.1.3 IsFinitelyPresentedObjectRep

. IsFinitelyPresentedObjectRep(M) (Representation)

Returns: true or false
The GAP representation of finitley presented homalg objects.
(It is a representation of the GAP category IsHomalgObject (3.1.1), which is a subrepresentation

of the GAP representations IsStructureObjectOrFinitelyPresentedObjectRep.)

11

homalg 12

Code
DeclareRepresentation("IsFinitelyPresentedObjectRep",

IsHomalgObject and
IsStructureObjectOrFinitelyPresentedObjectRep,
[]);

3.1.4 IsStaticFinitelyPresentedObjectOrSubobjectRep

. IsStaticFinitelyPresentedObjectOrSubobjectRep(M) (Representation)

Returns: true or false
The GAP representation of finitley presented homalg static objects.
(It is a representation of the GAP category IsHomalgStaticObject (3.1.2).)

Code
DeclareRepresentation("IsStaticFinitelyPresentedObjectOrSubobjectRep",

IsHomalgStaticObject,
[]);

3.1.5 IsStaticFinitelyPresentedObjectRep

. IsStaticFinitelyPresentedObjectRep(M) (Representation)

Returns: true or false
The GAP representation of finitley presented homalg static objects.
(It is a representation of the GAP category IsHomalgStaticObject (3.1.2), which is a subrepre-

sentation of the GAP representations IsStaticFinitelyPresentedObjectOrSubobjectRep and
IsFinitelyPresentedObjectRep.)

Code
DeclareRepresentation("IsStaticFinitelyPresentedObjectRep",

IsStaticFinitelyPresentedObjectOrSubobjectRep and
IsFinitelyPresentedObjectRep,
[]);

3.1.6 IsStaticFinitelyPresentedSubobjectRep

. IsStaticFinitelyPresentedSubobjectRep(M) (Representation)

Returns: true or false
The GAP representation of finitley presented homalg subobjects of static objects.
(It is a representation of the GAP category IsHomalgStaticObject (3.1.2), which is a subrepre-

sentation of the GAP representations IsStaticFinitelyPresentedObjectOrSubobjectRep and
IsFinitelyPresentedObjectRep.)

Code
DeclareRepresentation("IsStaticFinitelyPresentedSubobjectRep",

IsStaticFinitelyPresentedObjectOrSubobjectRep and
IsFinitelyPresentedObjectRep,
[]);

homalg 13

3.2 Objects: Constructors

3.2.1 Subobject (constructor for subobjects using morphisms)

. Subobject(phi) (operation)

Returns: a homalg subobject
A synonym of ImageSubobject (4.4.7).

3.3 Objects: Properties

3.3.1 IsFree

. IsFree(M) (property)

Returns: true or false
Check if the homalg object M is free.

3.3.2 IsStablyFree

. IsStablyFree(M) (property)

Returns: true or false
Check if the homalg object M is stably free.

3.3.3 IsProjective

. IsProjective(M) (property)

Returns: true or false
Check if the homalg object M is projective.

3.3.4 IsProjectiveOfConstantRank

. IsProjectiveOfConstantRank(M) (property)

Returns: true or false
Check if the homalg object M is projective of constant rank.

3.3.5 IsInjective

. IsInjective(M) (property)

Returns: true or false
Check if the homalg object M is (marked) injective.

3.3.6 IsInjectiveCogenerator

. IsInjectiveCogenerator(M) (property)

Returns: true or false
Check if the homalg object M is (marked) an injective cogenerator.

homalg 14

3.3.7 FiniteFreeResolutionExists

. FiniteFreeResolutionExists(M) (property)

Returns: true or false
Check if the homalg object M allows a finite free resolution.

(no method installed)

3.3.8 IsReflexive

. IsReflexive(M) (property)

Returns: true or false
Check if the homalg object M is reflexive.

3.3.9 IsTorsionFree

. IsTorsionFree(M) (property)

Returns: true or false
Check if the homalg object M is torsion-free.

3.3.10 IsArtinian

. IsArtinian(M) (property)

Returns: true or false
Check if the homalg object M is artinian.

3.3.11 IsTorsion

. IsTorsion(M) (property)

Returns: true or false
Check if the homalg object M is torsion.

3.3.12 IsPure

. IsPure(M) (property)

Returns: true or false
Check if the homalg object M is pure.

3.3.13 IsCohenMacaulay

. IsCohenMacaulay(M) (property)

Returns: true or false
Check if the homalg object M is Cohen-Macaulay (depends on the specific Abelian category).

3.3.14 IsGorenstein

. IsGorenstein(M) (property)

Returns: true or false
Check if the homalg object M is Gorenstein (depends on the specific Abelian category).

homalg 15

3.3.15 IsKoszul

. IsKoszul(M) (property)

Returns: true or false
Check if the homalg object M is Koszul (depends on the specific Abelian category).

3.3.16 HasConstantRank

. HasConstantRank(M) (property)

Returns: true or false
Check if the homalg object M has constant rank.

(no method installed)

3.3.17 ConstructedAsAnIdeal

. ConstructedAsAnIdeal(J) (property)

Returns: true or false
Check if the homalg subobject J was constructed as an ideal.

(no method installed)

3.4 Objects: Attributes

3.4.1 TorsionSubobject

. TorsionSubobject(M) (attribute)

Returns: a homalg subobject
This constructor returns the finitely generated torsion subobject of the homalg object M .

3.4.2 TheMorphismToZero

. TheMorphismToZero(M) (attribute)

Returns: a homalg map
The zero morphism from the homalg object M to zero.

3.4.3 TheIdentityMorphism

. TheIdentityMorphism(M) (attribute)

Returns: a homalg map
The identity automorphism of the homalg object M .

3.4.4 FullSubobject

. FullSubobject(M) (attribute)

Returns: a homalg subobject
The homalg object M as a subobject of itself.

homalg 16

3.4.5 ZeroSubobject

. ZeroSubobject(M) (attribute)

Returns: a homalg subobject
The zero subobject of the homalg object M .

3.4.6 EmbeddingInSuperObject

. EmbeddingInSuperObject(N) (attribute)

Returns: a homalg map
In case N was defined as a subobject of some object L the embedding of N in L is returned.

3.4.7 SuperObject (for subobjects)

. SuperObject(M) (attribute)

Returns: a homalg object
In case M was defined as a subobject of some object L the super object L is returned.

3.4.8 FactorObject

. FactorObject(N) (attribute)

Returns: a homalg object
In case N was defined as a subobject of some object L the factor object L/N is returned.

3.4.9 UnderlyingSubobject

. UnderlyingSubobject(M) (attribute)

Returns: a homalg subobject
In case M was defined as the object underlying a subobject L then L is returned.

(no method installed)

3.4.10 NatTrIdToHomHom_R (for morphisms)

. NatTrIdToHomHom_R(M) (attribute)

Returns: a homalg morphism
The natural evaluation morphism from the homalg object M to its double dual HomHom(M).

3.4.11 Annihilator (for static objects)

. Annihilator(M) (attribute)

Returns: a homalg subobject
The annihilator of the object M as a subobject of the structure object.

3.4.12 EndomorphismRing (for static objects)

. EndomorphismRing(M) (attribute)

Returns: a homalg object
The endomorphism ring of the object M .

homalg 17

3.4.13 UnitObject

. UnitObject(M) (property)

Returns: a Chern character
M is a homalg object.

3.4.14 RankOfObject

. RankOfObject(M) (attribute)

Returns: a nonnegative integer
The projective rank of the homalg object M .

3.4.15 ProjectiveDimension

. ProjectiveDimension(M) (attribute)

Returns: a nonnegative integer
The projective dimension of the homalg object M .

3.4.16 DegreeOfTorsionFreeness

. DegreeOfTorsionFreeness(M) (attribute)

Returns: a nonnegative integer of infinity
Auslander’s degree of torsion-freeness of the homalg object M . It is set to infinity only for M= 0.

3.4.17 Grade

. Grade(M) (attribute)

Returns: a nonnegative integer of infinity
The grade of the homalg object M . It is set to infinity if M= 0. Another name for this operation is

Depth.

3.4.18 PurityFiltration

. PurityFiltration(M) (attribute)

Returns: a homalg filtration
The purity filtration of the homalg object M .

3.4.19 CodegreeOfPurity

. CodegreeOfPurity(M) (attribute)

Returns: a list of nonnegative integers
The codegree of purity of the homalg object M .

3.4.20 HilbertPolynomial

. HilbertPolynomial(M) (attribute)

Returns: a univariate polynomial with rational coefficients
M is a homalg object.

homalg 18

3.4.21 AffineDimension

. AffineDimension(M) (attribute)

Returns: a nonnegative integer
M is a homalg object.

3.4.22 ProjectiveDegree

. ProjectiveDegree(M) (attribute)

Returns: a nonnegative integer
M is a homalg object.

3.4.23 ConstantTermOfHilbertPolynomialn

. ConstantTermOfHilbertPolynomialn(M) (attribute)

Returns: an integer
M is a homalg object.

3.4.24 ElementOfGrothendieckGroup

. ElementOfGrothendieckGroup(M) (property)

Returns: an element of the Grothendieck group of a projective space
M is a homalg object.

3.4.25 ChernPolynomial

. ChernPolynomial(M) (property)

Returns: a Chern polynomial with rank
M is a homalg object.

3.4.26 ChernCharacter

. ChernCharacter(M) (property)

Returns: a Chern character
M is a homalg object.

3.5 Objects: Operations and Functions

3.5.1 CurrentResolution

. CurrentResolution(M) (attribute)

Returns: a homalg complex
The computed (part of a) resolution of the static object M .

homalg 19

3.5.2 UnderlyingObject (for subobjects)

. UnderlyingObject(M) (operation)

Returns: a homalg object
In case M was defined as a subobject of some object L the object underlying the subobject M is

returned.

3.5.3 Saturate (for ideals)

. Saturate(K, J) (operation)

Returns: a homalg ideal
Compute the saturation ideal K : J∞ of the ideals K and J .

Example
gap> ZZ := HomalgRingOfIntegers();
Z
gap> Display(ZZ);
<An internal ring>
gap> m := LeftSubmodule("2", ZZ);
<A principal (left) ideal given by a cyclic generator>
gap> Display(m);
[[2]]

A (left) ideal generated by the entry of the above matrix
gap> J := LeftSubmodule("3", ZZ);
<A principal (left) ideal given by a cyclic generator>
gap> Display(J);
[[3]]

A (left) ideal generated by the entry of the above matrix
gap> I := Intersect(J, m^3);
<A principal (left) ideal given by a cyclic generator>
gap> Display(I);
[[-24]]

A (left) ideal generated by the entry of the above matrix
gap> Im := SubobjectQuotient(I, m);
<A principal (left) ideal of rank 1 on a free generator>
gap> Display(Im);
[[-12]]

A (left) ideal generated by the entry of the above matrix
gap> I_m := Saturate(I, m);
<A principal (left) ideal of rank 1 on a free generator>
gap> Display(I_m);
[[-3]]

A (left) ideal generated by the entry of the above matrix
gap> I_m = J;
true

Code
InstallMethod(Saturate,

"for homalg subobjects of static objects",

homalg 20

[IsStaticFinitelyPresentedSubobjectRep, IsStaticFinitelyPresentedSubobjectRep],

function(K, J)
local quotient_last, quotient;

quotient_last := SubobjectQuotient(K, J);

quotient := SubobjectQuotient(quotient_last, J);

while not IsSubset(quotient_last, quotient) do
quotient_last := quotient;
quotient := SubobjectQuotient(quotient_last, J);

od;

return quotient_last;

end);

InstallMethod(\-, ## a geometrically motivated definition
"for homalg subobjects of static objects",
[IsStaticFinitelyPresentedSubobjectRep, IsStaticFinitelyPresentedSubobjectRep],

function(K, J)

return Saturate(K, J);

end);

Chapter 4

Morphisms

4.1 Morphisms: Categories and Representations

4.1.1 IsHomalgMorphism

. IsHomalgMorphism(phi) (Category)

Returns: true or false
This is the super GAP-category which will include the GAP-categories

IsHomalgStaticMorphism (4.1.2) and IsHomalgChainMorphism (7.1.1). We need this GAP-
category to be able to build complexes with *objects* being objects of homalg categories or again
complexes. We need this GAP-category to be able to build chain morphisms with *morphisms* being
morphisms of homalg categories or again chain morphisms.
CAUTION: Never let homalg morphisms (which are not endomorphisms) be multiplicative
elements!!

Code
DeclareCategory("IsHomalgMorphism",

IsHomalgStaticObjectOrMorphism and
IsAdditiveElementWithInverse);

4.1.2 IsHomalgStaticMorphism

. IsHomalgStaticMorphism(phi) (Category)

Returns: true or false
This is the super GAP-category which will include the GAP-categories IsHomalgMap, etc.

CAUTION: Never let homalg morphisms (which are not endomorphisms) be multiplicative elements!!
Code

DeclareCategory("IsHomalgStaticMorphism",
IsHomalgMorphism);

4.1.3 IsHomalgEndomorphism

. IsHomalgEndomorphism(phi) (Category)

Returns: true or false
This is the super GAP-category which will include the GAP-categories IsHomalgSelfMap,

IsHomalgChainEndomorphism (7.1.2), etc. be multiplicative elements!!

21

homalg 22

Code
DeclareCategory("IsHomalgEndomorphism",

IsHomalgMorphism and
IsMultiplicativeElementWithInverse);

4.1.4 IsMorphismOfFinitelyGeneratedObjectsRep

. IsMorphismOfFinitelyGeneratedObjectsRep(phi) (Representation)

Returns: true or false
The GAP representation of morphisms of finitley generated homalg objects.
(It is a representation of the GAP category IsHomalgMorphism (4.1.1).)

Code
DeclareRepresentation("IsMorphismOfFinitelyGeneratedObjectsRep",

IsHomalgMorphism,
[]);

4.1.5 IsStaticMorphismOfFinitelyGeneratedObjectsRep

. IsStaticMorphismOfFinitelyGeneratedObjectsRep(phi) (Representation)

Returns: true or false
The GAP representation of static morphisms of finitley generated homalg static objects.
(It is a representation of the GAP category IsHomalgStaticMorphism (4.1.2), which is a sub-

representation of the GAP representation IsMorphismOfFinitelyGeneratedObjectsRep (4.1.4).)
Code

DeclareRepresentation("IsStaticMorphismOfFinitelyGeneratedObjectsRep",
IsHomalgStaticMorphism and
IsMorphismOfFinitelyGeneratedObjectsRep,
[]);

4.2 Morphisms: Constructors

4.3 Morphisms: Properties

4.3.1 IsMorphism

. IsMorphism(phi) (property)

Returns: true or false
IsMorphism=true means one of the following:

• The property method IsMorphism(phi) was explicitly invoked by the user and it returned true,
where prior to the invocation HasIsMorphism(phi) was false. The method is meant to check
the integrity of the data structure at the time of it invocation. What this precisely means depends
on the specific homalg-based package.

• The user has explicitly SetIsMorphism(phi , true).

• The morphism phi is output of a categorical procedure where IsMorphism has become true
for all morphisms in the input.

homalg 23

• The morphism phi is output of a categorical procedure which gurantees the integrity of the data
structure of its output independent of its input.

4.3.2 IsGeneralizedMorphismWithFullDomain

. IsGeneralizedMorphismWithFullDomain(phi) (property)

Returns: true or false
Check if phi is a generalized morphism.

4.3.3 IsGeneralizedEpimorphism

. IsGeneralizedEpimorphism(phi) (property)

Returns: true or false
Check if phi is a generalized epimorphism.

4.3.4 IsGeneralizedMonomorphism

. IsGeneralizedMonomorphism(phi) (property)

Returns: true or false
Check if phi is a generalized monomorphism.

4.3.5 IsGeneralizedIsomorphism

. IsGeneralizedIsomorphism(phi) (property)

Returns: true or false
Check if phi is a generalized isomorphism.

4.3.6 IsOne

. IsOne(phi) (property)

Returns: true or false
Check if the homalg morphism phi is the identity morphism.

4.3.7 IsIdempotent

. IsIdempotent(phi) (property)

Returns: true or false
Check if the homalg morphism phi is an automorphism.

4.3.8 IsMonomorphism

. IsMonomorphism(phi) (property)

Returns: true or false
Check if the homalg morphism phi is a monomorphism.

homalg 24

4.3.9 IsEpimorphism

. IsEpimorphism(phi) (property)

Returns: true or false
Check if the homalg morphism phi is an epimorphism.

4.3.10 IsSplitMonomorphism

. IsSplitMonomorphism(phi) (property)

Returns: true or false
Check if the homalg morphism phi is a split monomorphism.

4.3.11 IsSplitEpimorphism

. IsSplitEpimorphism(phi) (property)

Returns: true or false
Check if the homalg morphism phi is a split epimorphism.

4.3.12 IsIsomorphism

. IsIsomorphism(phi) (property)

Returns: true or false
Check if the homalg morphism phi is an isomorphism.

4.3.13 IsAutomorphism

. IsAutomorphism(phi) (property)

Returns: true or false
Check if the homalg morphism phi is an automorphism.

4.4 Morphisms: Attributes

4.4.1 Source

. Source(phi) (attribute)

Returns: a homalg object
The source of the homalg morphism phi .

4.4.2 Range

. Range(phi) (attribute)

Returns: a homalg object
The target (range) of the homalg morphism phi .

homalg 25

4.4.3 CokernelEpi (for morphisms)

. CokernelEpi(phi) (attribute)

Returns: a homalg morphism
The natural epimorphism from the Range(phi) onto the Cokernel(phi).

4.4.4 CokernelNaturalGeneralizedIsomorphism (for morphisms)

. CokernelNaturalGeneralizedIsomorphism(phi) (attribute)

Returns: a homalg morphism
The natural generalized isomorphism from the Cokernel(phi) onto the Range(phi).

4.4.5 KernelSubobject

. KernelSubobject(phi) (attribute)

Returns: a homalg subobject
This constructor returns the finitely generated kernel of the homalg morphism phi as a subobject

of the homalg object Source(phi) with generators given by the syzygies of phi .

4.4.6 KernelEmb (for morphisms)

. KernelEmb(phi) (attribute)

Returns: a homalg morphism
The natural embedding of the Kernel(phi) into the Source(phi).

4.4.7 ImageSubobject

. ImageSubobject(phi) (attribute)

Returns: a homalg subobject
This constructor returns the finitely generated image of the homalg morphism phi as a subobject

of the homalg object Range(phi) with generators given by phi applied to the generators of its source
object.

4.4.8 ImageObjectEmb (for morphisms)

. ImageObjectEmb(phi) (attribute)

Returns: a homalg morphism
The natural embedding of the ImageObject(phi) into the Range(phi).

4.4.9 ImageObjectEpi (for morphisms)

. ImageObjectEpi(phi) (attribute)

Returns: a homalg morphism
The natural epimorphism from the Source(phi) onto the ImageObject(phi).

homalg 26

4.4.10 MorphismAid

. MorphismAid(phi) (attribute)

Returns: a homalg morphism
The morphism aid map of a true generalized map.

(no method installed)

4.4.11 InverseOfGeneralizedMorphismWithFullDomain

. InverseOfGeneralizedMorphismWithFullDomain(phi) (attribute)

Returns: a homalg morphism
The generalized inverse of the epimorphism phi (cf. [Bar, Cor. 4.8])).

4.4.12 DegreeOfMorphism

. DegreeOfMorphism(phi) (attribute)

Returns: an integer
The degree of the morphism phi between graded objects.

(no method installed)

4.5 Morphisms: Operations and Functions

4.5.1 ByASmallerPresentation (for morphisms)

. ByASmallerPresentation(phi) (method)

Returns: a homalg map
It invokes ByASmallerPresentation for homalg (static) objects.

Code
InstallMethod(ByASmallerPresentation,

"for homalg morphisms",
[IsStaticMorphismOfFinitelyGeneratedObjectsRep],

function(phi)

ByASmallerPresentation(Source(phi));
ByASmallerPresentation(Range(phi));

return DecideZero(phi);

end);

This method performs side effects on its argument phi and returns it.
Example

gap> ZZ := HomalgRingOfIntegers();
Z
gap> M := HomalgMatrix("[2, 3, 4, 5, 6, 7]", 2, 3, ZZ);
<A 2 x 3 matrix over an internal ring>
gap> M := LeftPresentation(M);
<A non-torsion left module presented by 2 relations for 3 generators>
gap> N := HomalgMatrix("[2, 3, 4, 5, 6, 7, 8, 9]", 2, 4, ZZ);

homalg 27

<A 2 x 4 matrix over an internal ring>
gap> N := LeftPresentation(N);
<A non-torsion left module presented by 2 relations for 4 generators>
gap> mat := HomalgMatrix("[\
> 1, 0, -2, -4, \
> 0, 1, 4, 7, \
> 1, 0, -2, -4 \
>]", 3, 4, ZZ);
<A 3 x 4 matrix over an internal ring>
gap> phi := HomalgMap(mat, M, N);
<A "homomorphism" of left modules>
gap> IsMorphism(phi);
true
gap> phi;
<A homomorphism of left modules>
gap> Display(phi);
[[1, 0, -2, -4],

[0, 1, 4, 7],
[1, 0, -2, -4]]

the map is currently represented by the above 3 x 4 matrix
gap> ByASmallerPresentation(phi);
<A non-zero homomorphism of left modules>
gap> Display(phi);
[[0, 0, 0],

[1, -1, -2]]

the map is currently represented by the above 2 x 3 matrix
gap> M;
<A rank 1 left module presented by 1 relation for 2 generators>
gap> Display(M);
Z/< 3 > + Z^(1 x 1)
gap> N;
<A rank 2 left module presented by 1 relation for 3 generators>
gap> Display(N);
Z/< 4 > + Z^(1 x 2)

Chapter 5

Elements

An element of an object M is internally represented by a morphism from the “structure object” to the
object M. In particular, the data structure for object elements automatically profits from the intrinsic
realization of morphisms in the homalg project.

5.1 Elements: Category and Representations

5.1.1 IsHomalgElement

. IsHomalgElement(M) (Category)

Returns: true or false
The GAP category of object elements.

5.1.2 IsElementOfAnObjectGivenByAMorphismRep

. IsElementOfAnObjectGivenByAMorphismRep(M) (Representation)

Returns: true or false
The GAP representation of elements of finitley presented objects.
(It is a representation of the GAP category IsHomalgElement (5.1.1).)

5.2 Elements: Constructors

5.3 Elements: Properties

5.3.1 IsZero (for elements)

. IsZero(m) (property)

Returns: true or false
Check if the object element m is zero.

5.3.2 IsCyclicGenerator

. IsCyclicGenerator(m) (property)

Returns: true or false
Check if the object element m is a cyclic generator.

28

homalg 29

5.3.3 IsTorsion

. IsTorsion(m) (property)

Returns: true or false
Check if the object element m is a torsion element.

5.4 Elements: Attributes

5.4.1 Annihilator (for elements)

. Annihilator(e) (attribute)

Returns: a homalg subobject
The annihilator of the object element e as a subobject of the structure object.

5.5 Elements: Operations and Functions

5.5.1 in (for elements)

. in(m, N) (attribute)

Returns: true or false
Is the element m of the object M included in the subobject N≤M, i.e., does the morphism (with

the unit object as source and M as target) underling the element m of M factor over the subobject
morphism N→M?

Example
gap> ZZ := HomalgRingOfIntegers();
Z
gap> M := 2 * ZZ;
<A free left module of rank 2 on free generators>
gap> a := HomalgModuleElement("[6, 0]", M);
(6, 0)
gap> N := Subobject(HomalgMap("[2, 0]", 1 * ZZ, M));
<A free left submodule given by a cyclic generator>
gap> K := Subobject(HomalgMap("[4, 0]", 1 * ZZ, M));
<A free left submodule given by a cyclic generator>
gap> a in M;
true
gap> a in N;
true
gap> a in UnderlyingObject(N);
true
gap> a in K;
false
gap> a in UnderlyingObject(K);
false
gap> a in 3 * ZZ;
false

Code
InstallMethod(\in,

"for homalg elements",
[IsHomalgElement, IsStaticFinitelyPresentedSubobjectRep],

homalg 30

function(m, N)
local phi, psi;

phi := UnderlyingMorphism(m);

psi := MorphismHavingSubobjectAsItsImage(N);

if not IsIdenticalObj(Range(phi), Range(psi)) then
Error("the super object of the subobject and the range ",

"of the morphism underlying the element do not coincide\n");
fi;

return IsZero(PreCompose(phi, CokernelEpi(psi)));

end);

Chapter 6

Complexes

6.1 Complexes: Category and Representations

6.1.1 IsHomalgComplex

. IsHomalgComplex(C) (Category)

Returns: true or false
The GAP category of homalg (co)complexes.
(It is a subcategory of the GAP category IsHomalgObject.)

6.1.2 IsComplexOfFinitelyPresentedObjectsRep

. IsComplexOfFinitelyPresentedObjectsRep(C) (Representation)

Returns: true or false
The GAP representation of complexes of finitley presented homalg objects.
(It is a representation of the GAP category IsHomalgComplex (6.1.1), which is a subrepresenta-

tion of the GAP representation IsFinitelyPresentedObjectRep.)

6.1.3 IsCocomplexOfFinitelyPresentedObjectsRep

. IsCocomplexOfFinitelyPresentedObjectsRep(C) (Representation)

Returns: true or false
The GAP representation of cocomplexes of finitley presented homalg objects.
(It is a representation of the GAP category IsHomalgComplex (6.1.1), which is a subrepresenta-

tion of the GAP representation IsFinitelyPresentedObjectRep.)

6.2 Complexes: Constructors

6.2.1 HomalgComplex (constructor for complexes given an object)

. HomalgComplex(M[, d]) (function)

. HomalgComplex(phi[, d]) (function)

. HomalgComplex(C[, d]) (function)

. HomalgComplex(cm[, d]) (function)

Returns: a homalg complex

31

homalg 32

The first syntax creates a complex (i.e. chain complex) with the single homalg object M at (ho-
mological) degree d .

The second syntax creates a complex with the single homalg morphism phi , its source placed at
(homological) degree d (and its target at d−1).

The third syntax creates a complex (i.e. chain complex) with the single homalg (co)complex C at
(homological) degree d .

The fourth syntax creates a complex with the single homalg (co)chain morphism cm (→
HomalgChainMorphism (7.2.1)), its source placed at (homological) degree d (and its target at d−1).

If d is not provided it defaults to zero in all cases.
To add a morphism (resp. (co)chain morphism) to a complex use Add (6.5.1).

Example
gap> ZZ := HomalgRingOfIntegers();
Z
gap> M := HomalgMatrix("[2, 3, 4, 5, 6, 7]", 2, 3, ZZ);
<A 2 x 3 matrix over an internal ring>
gap> M := LeftPresentation(M);
<A non-torsion left module presented by 2 relations for 3 generators>
gap> N := HomalgMatrix("[2, 3, 4, 5, 6, 7, 8, 9]", 2, 4, ZZ);
<A 2 x 4 matrix over an internal ring>
gap> N := LeftPresentation(N);
<A non-torsion left module presented by 2 relations for 4 generators>
gap> mat := HomalgMatrix("[\
> 0, 3, 6, 9, \
> 0, 2, 4, 6, \
> 0, 3, 6, 9 \
>]", 3, 4, ZZ);
<A 3 x 4 matrix over an internal ring>
gap> phi := HomalgMap(mat, M, N);
<A "homomorphism" of left modules>
gap> IsMorphism(phi);
true
gap> phi;
<A homomorphism of left modules>

The first possibility:
Example

<A homomorphism of left modules>
gap> C := HomalgComplex(N);
<A non-zero graded homology object consisting of a single left module at degre\
e 0>
gap> Add(C, phi);
gap> C;
<A complex containing a single morphism of left modules at degrees [0 .. 1]>

The second possibility:
Example

gap> C := HomalgComplex(phi);
<A non-zero acyclic complex containing a single morphism of left modules at de\
grees [0 .. 1]>

homalg 33

6.2.2 HomalgCocomplex (constructor for cocomplexes given a object)

. HomalgCocomplex(M[, d]) (function)

. HomalgCocomplex(phi[, d]) (function)

. HomalgCocomplex(C[, d]) (function)

. HomalgCocomplex(cm[, d]) (function)

Returns: a homalg complex
The first syntax creates a cocomplex (i.e. cochain complex) with the single homalg object M at

(cohomological) degree d .
The second syntax creates a cocomplex with the single homalg morphism phi , its source placed

at (cohomological) degree d (and its target at d+1).
The third syntax creates a cocomplex (i.e. cochain complex) with the single homalg cocomplex

C at (cohomological) degree d .
The fourth syntax creates a cocomplex with the single homalg (co)chain morphism cm (→

HomalgChainMorphism (7.2.1)), its source placed at (cohomological) degree d (and its target at
d+1).

If d is not provided it defaults to zero in all cases.
To add a morphism (resp. (co)chain morphism) to a cocomplex use Add (6.5.1).

Example
gap> ZZ := HomalgRingOfIntegers();
Z
gap> M := HomalgMatrix("[2, 3, 4, 5, 6, 7]", 2, 3, ZZ);
<A 2 x 3 matrix over an internal ring>
gap> M := RightPresentation(Involution(M));
<A non-torsion right module on 3 generators satisfying 2 relations>
gap> N := HomalgMatrix("[2, 3, 4, 5, 6, 7, 8, 9]", 2, 4, ZZ);
<A 2 x 4 matrix over an internal ring>
gap> N := RightPresentation(Involution(N));
<A non-torsion right module on 4 generators satisfying 2 relations>
gap> mat := HomalgMatrix("[\
> 0, 3, 6, 9, \
> 0, 2, 4, 6, \
> 0, 3, 6, 9 \
>]", 3, 4, ZZ);
<A 3 x 4 matrix over an internal ring>
gap> phi := HomalgMap(Involution(mat), M, N);
<A "homomorphism" of right modules>
gap> IsMorphism(phi);
true
gap> phi;
<A homomorphism of right modules>

The first possibility:
Example

<A homomorphism of right modules>
gap> C := HomalgCocomplex(M);
<A non-zero graded cohomology object consisting of a single right module at de\
gree 0>
gap> Add(C, phi);
gap> C;

homalg 34

<A cocomplex containing a single morphism of right modules at degrees
[0 .. 1]>

The second possibility:
Example

gap> C := HomalgCocomplex(phi);
<A non-zero acyclic cocomplex containing a single morphism of right modules at\
degrees [0 .. 1]>

6.3 Complexes: Properties

6.3.1 IsSequence

. IsSequence(C) (property)

Returns: true or false
Check if all maps in C are well-defined.

6.3.2 IsComplex

. IsComplex(C) (property)

Returns: true or false
Check if C is complex.

6.3.3 IsAcyclic

. IsAcyclic(C) (property)

Returns: true or false
Check if the homalg complex C is acyclic, i.e. exact except at its boundaries.

6.3.4 IsRightAcyclic

. IsRightAcyclic(C) (property)

Returns: true or false
Check if the homalg complex C is acyclic, i.e. exact except at its left boundary.

6.3.5 IsLeftAcyclic

. IsLeftAcyclic(C) (property)

Returns: true or false
Check if the homalg complex C is acyclic, i.e. exact except at its right boundary.

6.3.6 IsGradedObject

. IsGradedObject(C) (property)

Returns: true or false
Check if the homalg complex C is a graded object, i.e. if all maps between the objects in C

vanish.

homalg 35

6.3.7 IsExactSequence

. IsExactSequence(C) (property)

Returns: true or false
Check if the homalg complex C is exact.

6.3.8 IsShortExactSequence

. IsShortExactSequence(C) (property)

Returns: true or false
Check if the homalg complex C is a short exact sequence.

6.3.9 IsSplitShortExactSequence

. IsSplitShortExactSequence(C) (property)

Returns: true or false
Check if the homalg complex C is a split short exact sequence.

6.3.10 IsTriangle

. IsTriangle(C) (property)

Returns: true or false
Set to true if the homalg complex C is a triangle.

6.3.11 IsExactTriangle

. IsExactTriangle(C) (property)

Returns: true or false
Check if the homalg complex C is an exact triangle.

6.4 Complexes: Attributes

6.4.1 BettiTable (for complexes)

. BettiTable(C) (attribute)

Returns: a homalg diagram
The Betti diagram of the homalg complex C of graded modules.

6.4.2 FiltrationByShortExactSequence (for complexes)

. FiltrationByShortExactSequence(C) (attribute)

Returns: a homalg diagram
The filtration induced by the short exact sequence C on its middle object.

homalg 36

6.5 Complexes: Operations and Functions

6.5.1 Add (to complexes given a morphism)

. Add(C, phi) (operation)

. Add(C, mat) (operation)

Returns: a homalg complex
In the first syntax the morphism phi is added to the (co)chain complex C (→ 6.2) as the new

highest degree morphism and the altered argument C is returned. In case C is a chain complex, the
highest degree object in C and the target of phi must be identical. In case C is a cochain complex, the
highest degree object in C and the source of phi must be identical.

In the second syntax the matrix mat is interpreted as the matrix of the new highest degree mor-
phism psi, created according to the following rules: In case C is a chain complex, the highest degree
left (resp. right) object Cd in C is declared as the target of psi, while its source is taken to be a free left
(resp. right) object of rank equal to NrRows(mat) (resp. NrColumns(mat)). For this NrColumns(mat)
(resp. NrRows(mat)) must coincide with the NrGenerators(Cd). In case C is a cochain complex, the
highest degree left (resp. right) object Cd in C is declared as the source of psi, while its target is taken
to be a free left (resp. right) object of rank equal to NrColumns(mat) (resp. NrRows(mat)). For this
NrRows(mat) (resp. Columns(mat)) must coincide with the NrGenerators(Cd).

Example
gap> ZZ := HomalgRingOfIntegers();
Z
gap> mat := HomalgMatrix("[0, 1, 0, 0]", 2, 2, ZZ);
<A 2 x 2 matrix over an internal ring>
gap> phi := HomalgMap(mat);
<A homomorphism of left modules>
gap> C := HomalgComplex(phi);
<A non-zero acyclic complex containing a single morphism of left modules at de\
grees [0 .. 1]>
gap> Add(C, mat);
gap> C;
<A sequence containing 2 morphisms of left modules at degrees [0 .. 2]>
gap> Display(C);

at homology degree: 2
Z^(1 x 2)

[[0, 1],

[0, 0]]

the map is currently represented by the above 2 x 2 matrix
------------v------------
at homology degree: 1
Z^(1 x 2)

[[0, 1],

[0, 0]]

the map is currently represented by the above 2 x 2 matrix
------------v------------
at homology degree: 0

homalg 37

Z^(1 x 2)

gap> IsComplex(C);
true
gap> IsAcyclic(C);
true
gap> IsExactSequence(C);
false
gap> C;
<A non-zero acyclic complex containing 2 morphisms of left modules at degrees
[0 .. 2]>

6.5.2 ByASmallerPresentation (for complexes)

. ByASmallerPresentation(C) (method)

Returns: a homalg complex
It invokes ByASmallerPresentation for homalg (static) objects.

Code
InstallMethod(ByASmallerPresentation,

"for homalg complexes",
[IsHomalgComplex],

function(C)

List(ObjectsOfComplex(C), ByASmallerPresentation);

if Length(ObjectDegreesOfComplex(C)) > 1 then
List(MorphismsOfComplex(C), DecideZero);

fi;

IsZero(C);

return C;

end);

This method performs side effects on its argument C and returns it.
Example

gap> ZZ := HomalgRingOfIntegers();
Z
gap> M := HomalgMatrix("[2, 3, 4, 5, 6, 7]", 2, 3, ZZ);
<A 2 x 3 matrix over an internal ring>
gap> M := LeftPresentation(M);
<A non-torsion left module presented by 2 relations for 3 generators>
gap> N := HomalgMatrix("[2, 3, 4, 5, 6, 7, 8, 9]", 2, 4, ZZ);
<A 2 x 4 matrix over an internal ring>
gap> N := LeftPresentation(N);
<A non-torsion left module presented by 2 relations for 4 generators>
gap> mat := HomalgMatrix("[\
> 0, 3, 6, 9, \
> 0, 2, 4, 6, \
> 0, 3, 6, 9 \

homalg 38

>]", 3, 4, ZZ);
<A 3 x 4 matrix over an internal ring>
gap> phi := HomalgMap(mat, M, N);
<A "homomorphism" of left modules>
gap> IsMorphism(phi);
true
gap> phi;
<A homomorphism of left modules>
gap> C := HomalgComplex(phi);
<A non-zero acyclic complex containing a single morphism of left modules at de\
grees [0 .. 1]>
gap> Display(C);

at homology degree: 1
[[2, 3, 4],

[5, 6, 7]]

Cokernel of the map

Z^(1x2) --> Z^(1x3),

currently represented by the above matrix

[[0, 3, 6, 9],

[0, 2, 4, 6],
[0, 3, 6, 9]]

the map is currently represented by the above 3 x 4 matrix
------------v------------
at homology degree: 0
[[2, 3, 4, 5],

[6, 7, 8, 9]]

Cokernel of the map

Z^(1x2) --> Z^(1x4),

currently represented by the above matrix

And now:
Example

gap> ByASmallerPresentation(C);
<A non-zero acyclic complex containing a single morphism of left modules at de\
grees [0 .. 1]>
gap> Display(C);

at homology degree: 1
Z/< 3 > + Z^(1 x 1)

[[0, 0, 0],

[2, 0, 0]]

homalg 39

the map is currently represented by the above 2 x 3 matrix
------------v------------
at homology degree: 0
Z/< 4 > + Z^(1 x 2)

Chapter 7

Chain Morphisms

7.1 ChainMorphisms: Categories and Representations

7.1.1 IsHomalgChainMorphism

. IsHomalgChainMorphism(cm) (Category)

Returns: true or false
The GAP category of homalg (co)chain morphisms.
(It is a subcategory of the GAP category IsHomalgMorphism.)

7.1.2 IsHomalgChainEndomorphism

. IsHomalgChainEndomorphism(cm) (Category)

Returns: true or false
The GAP category of homalg (co)chain endomorphisms.
(It is a subcategory of the GAP categories IsHomalgChainMorphism and

IsHomalgEndomorphism.)

7.1.3 IsChainMorphismOfFinitelyPresentedObjectsRep

. IsChainMorphismOfFinitelyPresentedObjectsRep(c) (Representation)

Returns: true or false
The GAP representation of chain morphisms of finitely presented homalg objects.
(It is a representation of the GAP category IsHomalgChainMorphism (7.1.1), which is a subrep-

resentation of the GAP representation IsMorphismOfFinitelyGeneratedObjectsRep.)

7.1.4 IsCochainMorphismOfFinitelyPresentedObjectsRep

. IsCochainMorphismOfFinitelyPresentedObjectsRep(c) (Representation)

Returns: true or false
The GAP representation of cochain morphisms of finitely presented homalg objects.
(It is a representation of the GAP category IsHomalgChainMorphism (7.1.1), which is a subrep-

resentation of the GAP representation IsMorphismOfFinitelyGeneratedObjectsRep.)

40

homalg 41

7.2 Chain Morphisms: Constructors

7.2.1 HomalgChainMorphism (constructor for chain morphisms given a morphism)

. HomalgChainMorphism(phi[, C][, D][, d]) (function)

Returns: a homalg chain morphism
The constructor creates a (co)chain morphism given a source homalg (co)chain complex C , a

target homalg (co)chain complex D , and a homalg morphism phi at (co)homological degree d . The
returned (co)chain morphism will cautiously be indicated using parenthesis: “chain morphism”. To
verify if the result is indeed a (co)chain morphism use IsMorphism (7.3.1). If source and target are
identical objects, and only then, the (co)chain morphism is created as a (co)chain endomorphism.

The following examples shows a chain morphism that induces the zero morphism on homology,
but is itself not zero in the derived category:

Example
gap> ZZ := HomalgRingOfIntegers();
Z
gap> M := 1 * ZZ;
<The free left module of rank 1 on a free generator>
gap> Display(M);
Z^(1 x 1)
gap> N := HomalgMatrix("[3]", 1, 1, ZZ);;
gap> N := LeftPresentation(N);
<A cyclic torsion left module presented by 1 relation for
a cyclic generator>

gap> Display(N);
Z/< 3 >
gap> a := HomalgMap(HomalgMatrix("[2]", 1, 1, ZZ), M, M);
<An endomorphism of a left module>
gap> c := HomalgMap(HomalgMatrix("[2]", 1, 1, ZZ), M, N);
<A homomorphism of left modules>
gap> b := HomalgMap(HomalgMatrix("[1]", 1, 1, ZZ), M, M);
<An endomorphism of a left module>
gap> d := HomalgMap(HomalgMatrix("[1]", 1, 1, ZZ), M, N);
<A homomorphism of left modules>
gap> C1 := HomalgComplex(a);
<A non-zero acyclic complex containing a single morphism of left modules at de\
grees [0 .. 1]>
gap> C2 := HomalgComplex(c);
<A non-zero acyclic complex containing a single morphism of left modules at de\
grees [0 .. 1]>
gap> cm := HomalgChainMorphism(d, C1, C2);
<A "chain morphism" containing a single left morphism at degree 0>
gap> Add(cm, b);
gap> IsMorphism(cm);
true
gap> cm;
<A chain morphism containing 2 morphisms of left modules at degrees
[0 .. 1]>
gap> hcm := DefectOfExactness(cm);
<A chain morphism of graded objects containing
2 morphisms of left modules at degrees [0 .. 1]>
gap> IsZero(hcm);

homalg 42

true
gap> IsZero(Source(hcm));
false
gap> IsZero(Range(hcm));
false

7.3 Chain Morphisms: Properties

7.3.1 IsMorphism (for chain morphisms)

. IsMorphism(cm) (property)

Returns: true or false
Check if cm is a well-defined chain morphism, i.e. independent of all involved presentations.

7.3.2 IsGeneralizedMorphismWithFullDomain (for chain morphisms)

. IsGeneralizedMorphismWithFullDomain(cm) (property)

Returns: true or false
Check if cm is a generalized morphism.

7.3.3 IsGeneralizedEpimorphism (for chain morphisms)

. IsGeneralizedEpimorphism(cm) (property)

Returns: true or false
Check if cm is a generalized epimorphism.

7.3.4 IsGeneralizedMonomorphism (for chain morphisms)

. IsGeneralizedMonomorphism(cm) (property)

Returns: true or false
Check if cm is a generalized monomorphism.

7.3.5 IsGeneralizedIsomorphism (for chain morphisms)

. IsGeneralizedIsomorphism(cm) (property)

Returns: true or false
Check if cm is a generalized isomorphism.

7.3.6 IsOne (for chain morphisms)

. IsOne(cm) (property)

Returns: true or false
Check if the homalg chain morphism cm is the identity chain morphism.

homalg 43

7.3.7 IsMonomorphism (for chain morphisms)

. IsMonomorphism(cm) (property)

Returns: true or false
Check if the homalg chain morphism cm is a monomorphism.

7.3.8 IsEpimorphism (for chain morphisms)

. IsEpimorphism(cm) (property)

Returns: true or false
Check if the homalg chain morphism cm is an epimorphism.

7.3.9 IsSplitMonomorphism (for chain morphisms)

. IsSplitMonomorphism(cm) (property)

Returns: true or false
Check if the homalg chain morphism cm is a split monomorphism.

7.3.10 IsSplitEpimorphism (for chain morphisms)

. IsSplitEpimorphism(cm) (property)

Returns: true or false
Check if the homalg chain morphism cm is a split epimorphism.

7.3.11 IsIsomorphism (for chain morphisms)

. IsIsomorphism(cm) (property)

Returns: true or false
Check if the homalg chain morphism cm is an isomorphism.

7.3.12 IsAutomorphism (for chain morphisms)

. IsAutomorphism(cm) (property)

Returns: true or false
Check if the homalg chain morphism cm is an automorphism.

7.3.13 IsGradedMorphism (for chain morphisms)

. IsGradedMorphism(cm) (property)

Returns: true or false
Check if the source and target complex of the homalg chain morphism cm are graded objects, i.e.

if all their morphisms vanish.

homalg 44

7.3.14 IsQuasiIsomorphism (for chain morphisms)

. IsQuasiIsomorphism(cm) (property)

Returns: true or false
Check if the homalg chain morphism cm is a quasi-isomorphism.

7.4 Chain Morphisms: Attributes

7.4.1 Source (for chain morphisms)

. Source(cm) (attribute)

Returns: a homalg complex
The source of the homalg chain morphism cm .

7.4.2 Range (for chain morphisms)

. Range(cm) (attribute)

Returns: a homalg complex
The target (range) of the homalg chain morphism cm .

7.5 Chain Morphisms: Operations and Functions

7.5.1 ByASmallerPresentation (for chain morphisms)

. ByASmallerPresentation(cm) (method)

Returns: a homalg complex
See ByASmallerPresentation (6.5.2) on complexes.

Code
InstallMethod(ByASmallerPresentation,

"for homalg chain morphisms",
[IsHomalgChainMorphism],

function(cm)

ByASmallerPresentation(Source(cm));
ByASmallerPresentation(Range(cm));

List(MorphismsOfChainMorphism(cm), DecideZero);

return cm;

end);

This method performs side effects on its argument cm and returns it.

Chapter 8

Bicomplexes

Each bicomplex in homalg has an underlying complex of complexes. The bicomplex structure is
simply the addition of the known sign trick which induces the obvious equivalence between the cate-
gory of bicomplexes and the category of complexes with complexes as objects and chain morphisms
as morphisms. The majority of filtered complexes in algebra and geometry (unlike topology) arise as
the total complex of a bicomplex. Hence, most spectral sequences in algebra are spectral sequences
of bicomplexes. Indeed, bicomplexes in homalg are mainly used as an input for the spectral sequence
machinery.

8.1 Bicomplexes: Category and Representations

8.1.1 IsHomalgBicomplex

. IsHomalgBicomplex(BC) (Category)

Returns: true or false
The GAP category of homalg bi(co)complexes.
(It is a subcategory of the GAP category IsHomalgObject.)

8.1.2 IsBicomplexOfFinitelyPresentedObjectsRep

. IsBicomplexOfFinitelyPresentedObjectsRep(BC) (Representation)

Returns: true or false
The GAP representation of bicomplexes (homological bicomplexes) of finitley generated homalg

objects.
(It is a representation of the GAP category IsHomalgBicomplex (8.1.1), which is a subrepresen-

tation of the GAP representation IsFinitelyPresentedObjectRep.)

8.1.3 IsBicocomplexOfFinitelyPresentedObjectsRep

. IsBicocomplexOfFinitelyPresentedObjectsRep(BC) (Representation)

Returns: true or false
The GAP representation of bicocomplexes (cohomological bicomplexes) of finitley generated

homalg objects.
(It is a representation of the GAP category IsHomalgBicomplex (8.1.1), which is a subrepresen-

tation of the GAP representation IsFinitelyPresentedObjectRep.)

45

homalg 46

8.2 Bicomplexes: Constructors

8.2.1 HomalgBicomplex (constructor for bicomplexes given a complex of complexes)

. HomalgBicomplex(C) (function)

Returns: a homalg bicomplex
This constructor creates a bicomplex (homological bicomplex) given a homalg complex of

(co)complexes C (→ HomalgComplex (6.2.1)), resp. creates a bicocomplex (cohomological bicom-
plex) given a homalg cocomplex of (co)complexes C (→ HomalgCocomplex (6.2.2)). Using the usual
sign-trick a complex of complexes gives rise to a bicomplex and vice versa.

Example
gap> ZZ := HomalgRingOfIntegers();
Z
gap> M := HomalgMatrix("[2, 3, 4, 5, 6, 7]", 2, 3, ZZ);
<A 2 x 3 matrix over an internal ring>
gap> M := LeftPresentation(M);
<A non-torsion left module presented by 2 relations for 3 generators>
gap> d := Resolution(M);
<A non-zero right acyclic complex containing a single morphism of left modules\
at degrees [0 .. 1]>

gap> dd := Hom(d);
<A non-zero acyclic cocomplex containing a single morphism of right modules at\
degrees [0 .. 1]>

gap> C := Resolution(dd);
<An acyclic cocomplex containing a single morphism of right complexes at degre\
es [0 .. 1]>
gap> CC := Hom(C);
<A non-zero acyclic complex containing a single morphism of left cocomplexes a\
t degrees [0 .. 1]>
gap> BC := HomalgBicomplex(CC);
<A non-zero bicomplex containing left modules at bidegrees [0 .. 1]x
[-1 .. 0]>
gap> Display(BC);
* *
* *

gap> UU := UnderlyingComplex(BC);
<A non-zero acyclic complex containing a single morphism of left cocomplexes a\
t degrees [0 .. 1]>
gap> IsIdenticalObj(UU, CC);
true
gap> tBC := TransposedBicomplex(BC);
<A non-zero bicomplex containing left modules at bidegrees [-1 .. 0]x
[0 .. 1]>
gap> Display(tBC);
* *
* *

homalg 47

8.3 Bicomplexes: Properties

8.3.1 IsBisequence

. IsBisequence(BC) (property)

Returns: true or false
Check if all maps in BC are well-defined.

8.3.2 IsBicomplex

. IsBicomplex(BC) (property)

Returns: true or false
Check if BC is bicomplex.

8.3.3 IsTransposedWRTTheAssociatedComplex

. IsTransposedWRTTheAssociatedComplex(BC) (property)

Returns: true or false
Check if BC is transposed with respect to the associated complex of complexes.

(no method installed).

8.4 Bicomplexes: Attributes

8.4.1 TotalComplex

. TotalComplex(BC) (attribute)

Returns: a homalg (co)complex
The associated total complex.

8.4.2 SpectralSequence (for bicomplexes)

. SpectralSequence(BC) (attribute)

Returns: a homalg (co)homological spectral sequence
The associated spectral sequence.

8.5 Bicomplexes: Operations and Functions

8.5.1 UnderlyingComplex

. UnderlyingComplex(BC) (function)

Returns: a homalg complex
The (co)complex of (co)complexes underlying the (co)homological bicomplex BC .

8.5.2 ByASmallerPresentation (for bicomplexes)

. ByASmallerPresentation(B) (method)

Returns: a homalg bicomplex
See ByASmallerPresentation (6.5.2) on complexes.

homalg 48

Code
InstallMethod(ByASmallerPresentation,

"for homalg bicomplexes",
[IsHomalgBicomplex],

function(B)

ByASmallerPresentation(UnderlyingComplex(B));

IsZero(B);

return B;

end);

This method performs side effects on its argument B and returns it.

Chapter 9

Bigraded Objects

Bigraded objects in homalg provide a data structure for the sheets (or pages) of spectral sequences.

9.1 BigradedObjects: Categories and Representations

9.1.1 IsHomalgBigradedObject

. IsHomalgBigradedObject(Er) (Category)

Returns: true or false
The GAP category of homalg bigraded objects.
(It is a subcategory of the GAP category IsHomalgObject.)

9.1.2 IsHomalgBigradedObjectAssociatedToAnExactCouple

. IsHomalgBigradedObjectAssociatedToAnExactCouple(Er) (Category)

Returns: true or false
The GAP category of homalg bigraded objects associated to an exact couple.
(It is a subcategory of the GAP category IsHomalgBigradedObject.)

9.1.3 IsHomalgBigradedObjectAssociatedToAFilteredComplex

. IsHomalgBigradedObjectAssociatedToAFilteredComplex(Er) (Category)

Returns: true or false
The GAP category of homalg bigraded objects associated to a filtered complex.

The 0-th spectral sheet E0 stemming from a filtration is a bigraded (differential) object, which, in
general, does not stem from an exact couple (although E1, E2, ... do).

(It is a subcategory of the GAP category IsHomalgBigradedObject.)

9.1.4 IsHomalgBigradedObjectAssociatedToABicomplex

. IsHomalgBigradedObjectAssociatedToABicomplex(Er) (Category)

Returns: true or false
The GAP category of homalg bigraded objects associated to a bicmplex.
(It is a subcategory of the GAP category

IsHomalgBigradedObjectAssociatedToAFilteredComplex.)

49

homalg 50

9.1.5 IsBigradedObjectOfFinitelyPresentedObjectsRep

. IsBigradedObjectOfFinitelyPresentedObjectsRep(Er) (Representation)

Returns: true or false
The GAP representation of bigraded objects of finitley generated homalg objects.
(It is a representation of the GAP category IsHomalgBigradedObject (9.1.1), which is a sub-

representation of the GAP representation IsFinitelyPresentedObjectRep.)

9.2 Bigraded Objects: Constructors

9.2.1 HomalgBigradedObject (constructor for bigraded objects given a bicomplex)

. HomalgBigradedObject(B) (operation)

Returns: a homalg bigraded object
This constructor creates a homological (resp. cohomological) bigraded object given a homological

(resp. cohomological) homalg bicomplex B (→ HomalgBicomplex (8.2.1)). This is nothing but the
level zero sheet (without differential) of the spectral sequence associated to the bicomplex B . So it is
the double array of homalg objects (i.e. static objects or complexes) in B forgetting the morphisms.

Example
gap> ZZ := HomalgRingOfIntegers();
Z
gap> M := HomalgMatrix("[2, 3, 4, 5, 6, 7]", 2, 3, ZZ);;
gap> M := LeftPresentation(M);
<A non-torsion left module presented by 2 relations for 3 generators>
gap> d := Resolution(M);;
gap> dd := Hom(d);;
gap> C := Resolution(dd);;
gap> CC := Hom(C);
<A non-zero acyclic complex containing a single morphism of left cocomplexes a\
t degrees [0 .. 1]>
gap> B := HomalgBicomplex(CC);
<A non-zero bicomplex containing left modules at bidegrees [0 .. 1]x
[-1 .. 0]>
gap> E0 := HomalgBigradedObject(B);
<A bigraded object containing left modules at bidegrees [0 .. 1]x
[-1 .. 0]>
gap> Display(E0);
Level 0:

* *
* *

9.2.2 AsDifferentialObject (for homalg bigraded objects stemming from a bicomplex)

. AsDifferentialObject(Er) (method)

Returns: a homalg bigraded object
Add the induced bidegree (−r,r− 1) (resp. (r,−r + 1)) differential to the level r homological

(resp. cohomological) bigraded object stemming from a homological (resp. cohomological) bicom-
plex. This method performs side effects on its argument Er and returns it.

For an example see DefectOfExactness (9.2.3) below.

homalg 51

9.2.3 DefectOfExactness (for homalg differential bigraded objects)

. DefectOfExactness(Er) (method)

Returns: a homalg bigraded object
Homological: Compute the homology of a level r differential homological bigraded object, that

is the r -th sheet of a homological spectral sequence endowed with a bidegree (−r,r−1) differential.
The result is a level r+1 homological bigraded object without its differential.

Cohomological: Compute the cohomology of a level r differential cohomological bigraded ob-
ject, that is the r -th sheet of a cohomological spectral sequence endowed with a bidegree (r,−r+1)
differential. The result is a level r+1 cohomological bigraded object without its differential.

The differential of the resulting level r+1 object can a posteriori be computed using
AsDifferentialObject (9.2.2). The objects in the result are subquotients of the objects in Er .
An object in Er (at a spot (p,q)) is called stable if no passage to a true subquotient occurs at any
higher level. Of course, a zero object (at a spot (p,q)) is always stable.

Example
gap> ZZ := HomalgRingOfIntegers();
Z
gap> M := HomalgMatrix("[2, 3, 4, 5, 6, 7]", 2, 3, ZZ);;
gap> M := LeftPresentation(M);
<A non-torsion left module presented by 2 relations for 3 generators>
gap> d := Resolution(M);;
gap> dd := Hom(d);;
gap> C := Resolution(dd);;
gap> CC := Hom(C);
<A non-zero acyclic complex containing a single morphism of left cocomplexes a\
t degrees [0 .. 1]>
gap> B := HomalgBicomplex(CC);
<A non-zero bicomplex containing left modules at bidegrees [0 .. 1]x
[-1 .. 0]>

Now we construct the spectral sequence associated to the bicomplex B, also called the first spectral
sequence:

Example
gap> I_E0 := HomalgBigradedObject(B);
<A bigraded object containing left modules at bidegrees [0 .. 1]x
[-1 .. 0]>
gap> Display(I_E0);
Level 0:

* *
* *

gap> AsDifferentialObject(I_E0);
<A bigraded object with a differential of bidegree
[0, -1] containing left modules at bidegrees [0 .. 1]x[-1 .. 0]>
gap> I_E0;
<A bigraded object with a differential of bidegree
[0, -1] containing left modules at bidegrees [0 .. 1]x[-1 .. 0]>
gap> AsDifferentialObject(I_E0);
<A bigraded object with a differential of bidegree
[0, -1] containing left modules at bidegrees [0 .. 1]x[-1 .. 0]>
gap> I_E1 := DefectOfExactness(I_E0);

homalg 52

<A bigraded object containing left modules at bidegrees [0 .. 1]x
[-1 .. 0]>
gap> Display(I_E1);
Level 1:

* *
. .

gap> AsDifferentialObject(I_E1);
<A bigraded object with a differential of bidegree
[-1, 0] containing left modules at bidegrees [0 .. 1]x[-1 .. 0]>
gap> I_E2 := DefectOfExactness(I_E1);
<A bigraded object containing left modules at bidegrees [0 .. 1]x
[-1 .. 0]>
gap> Display(I_E2);
Level 2:

s .
. .

Legend:

• A star * stands for a nonzero object.

• A dot . stands for a zero object.

• The letter s stands for a nonzero object that became stable.

The second spectral sequence of the bicomplex is, by definition, the spectral sequence associated
to the transposed bicomplex:

Example
gap> tB := TransposedBicomplex(B);
<A non-zero bicomplex containing left modules at bidegrees [-1 .. 0]x
[0 .. 1]>
gap> II_E0 := HomalgBigradedObject(tB);
<A bigraded object containing left modules at bidegrees [-1 .. 0]x
[0 .. 1]>
gap> Display(II_E0);
Level 0:

* *
* *

gap> AsDifferentialObject(II_E0);
<A bigraded object with a differential of bidegree
[0, -1] containing left modules at bidegrees [-1 .. 0]x[0 .. 1]>
gap> II_E1 := DefectOfExactness(II_E0);
<A bigraded object containing left modules at bidegrees [-1 .. 0]x
[0 .. 1]>
gap> Display(II_E1);
Level 1:

* *
. s

gap> AsDifferentialObject(II_E1);

homalg 53

<A bigraded object with a differential of bidegree
[-1, 0] containing left modules at bidegrees [-1 .. 0]x[0 .. 1]>
gap> II_E2 := DefectOfExactness(II_E1);
<A bigraded object containing left modules at bidegrees [-1 .. 0]x
[0 .. 1]>
gap> Display(II_E2);
Level 2:

s .
. s

9.3 Bigraded Objects: Properties

9.3.1 IsEndowedWithDifferential

. IsEndowedWithDifferential(Er) (property)

Returns: true or false
Check if Er is a differential bigraded object.

(no method installed)

9.3.2 IsStableSheet

. IsStableSheet(Er) (property)

Returns: true or false
Check if Er is stable.

(no method installed)

9.4 Bigraded Objects: Operations and Functions

9.4.1 ByASmallerPresentation (for bigraded objects)

. ByASmallerPresentation(Er) (method)

Returns: a homalg bigraded object
It invokes ByASmallerPresentation for homalg (static) objects.

Code
InstallMethod(ByASmallerPresentation,

"for homalg bigraded objects",
[IsHomalgBigradedObject],

function(Er)

List(Flat(ObjectsOfBigradedObject(Er)), ByASmallerPresentation);

return Er;

end);

This method performs side effects on its argument Er and returns it.

Chapter 10

Spectral Sequences

Spectral sequences are regarded as the computational sledgehammer in homological algebra. Quoting
the last lines of Rotman’s book [Rot79]:

“The reader should now be convinced that virtually every purely homological result may be proved
with spectral sequences. Even though “elementary” proofs may exist for many of these results, spec-
tral sequences offer a systematic approach in place of sporadic success.”

10.1 SpectralSequences: Categorie and Representations

10.1.1 IsHomalgSpectralSequence

. IsHomalgSpectralSequence(E) (Category)

Returns: true or false
The GAP category of homalg (co)homological spectral sequences.
(It is a subcategory of the GAP category IsHomalgObject.)

10.1.2 IsHomalgSpectralSequenceAssociatedToAnExactCouple

. IsHomalgSpectralSequenceAssociatedToAnExactCouple(E) (Category)

Returns: true or false
The GAP category of homalg associated to an exact couple.
(It is a subcategory of the GAP category IsHomalgSpectralSequence.)

10.1.3 IsHomalgSpectralSequenceAssociatedToAFilteredComplex

. IsHomalgSpectralSequenceAssociatedToAFilteredComplex(E) (Category)

Returns: true or false
The GAP category of homalg associated to a filtered complex.
(It is a subcategory of the GAP category IsHomalgSpectralSequence.)

The 0-th spectral sheet E0 stemming from a filtration is a bigraded (differential) object, which,
in general, does not stem from an exact couple (although E1, E2, ... do).

54

homalg 55

10.1.4 IsHomalgSpectralSequenceAssociatedToABicomplex

. IsHomalgSpectralSequenceAssociatedToABicomplex(E) (Category)

Returns: true or false
The GAP category of homalg associated to a bicomplex.
(It is a subcategory of the GAP category

IsHomalgSpectralSequenceAssociatedToAFilteredComplex.)

10.1.5 IsSpectralSequenceOfFinitelyPresentedObjectsRep

. IsSpectralSequenceOfFinitelyPresentedObjectsRep(E) (Representation)

Returns: true or false
The GAP representation of homological spectral sequences of finitley generated homalg objects.
(It is a representation of the GAP category IsHomalgSpectralSequence (10.1.1), which is a

subrepresentation of the GAP representation IsFinitelyPresentedObjectRep.)

10.1.6 IsSpectralCosequenceOfFinitelyPresentedObjectsRep

. IsSpectralCosequenceOfFinitelyPresentedObjectsRep(E) (Representation)

Returns: true or false
The GAP representation of cohomological spectral sequences of finitley generated homalg ob-

jects.
(It is a representation of the GAP category IsHomalgSpectralSequence (10.1.1), which is a

subrepresentation of the GAP representation IsFinitelyPresentedObjectRep.)

10.2 Spectral Sequences: Constructors

10.2.1 HomalgSpectralSequence (constructor for spectral sequences given a bicom-
plex)

. HomalgSpectralSequence(r, B, a) (operation)

. HomalgSpectralSequence(r, B) (operation)

. HomalgSpectralSequence(B, a) (operation)

. HomalgSpectralSequence(B) (operation)

Returns: a homalg spectral sequence
The first syntax is the main constructor. It creates the homological (resp. cohomological) spectral

sequence associated to the homological (resp. cohomological) bicomplex B starting at level 0 and end-
ing at level r≥ 0 (regardless if the spectral sequence stabilizes earlier). The generalized embeddings
into the objects of 0-th sheet are always computed for each higher sheet Er and stored as a record
under the component Er!.absolute_embeddings. If a is greater than 0 the generalized embeddings
into the objects of the a -th sheet also get computed for each higher sheet Er and stored as a record
under the component Er!.relative_embeddings. The level a at which the spectral sequence becomes
intrinsic is a natural candidate for a . The a -th sheet is called the special sheet.

If r=−1 it computes all the sheets of the spectral sequence until the sequence stabilizes, i.e. until
all higher arrows become zero.

If a=−1 no special sheet is specified.
In the second syntax a is set to −1.
In the third syntax r is set to −1.

homalg 56

In the fourth syntax both r and a are set to −1.
The following example demonstrates the computation of a Tor−Ext spectral sequence:

Example
gap> ZZ := HomalgRingOfIntegers();
Z
gap> M := HomalgMatrix("[2, 3, 4, 5, 6, 7]", 2, 3, ZZ);;
gap> M := LeftPresentation(M);
<A non-torsion left module presented by 2 relations for 3 generators>
gap> dM := Resolution(M);
<A non-zero right acyclic complex containing a single morphism of left modules\
at degrees [0 .. 1]>

gap> CC := Hom(dM, dM);
<A non-zero acyclic cocomplex containing a single morphism of right complexes \
at degrees [0 .. 1]>
gap> B := HomalgBicomplex(CC);
<A non-zero bicocomplex containing right modules at bidegrees [0 .. 1]x
[-1 .. 0]>

Now we construct the spectral sequence associated to the bicomplex B, also called the first spectral
sequence:

Example
gap> I_E := HomalgSpectralSequence(2, B);
<A stable cohomological spectral sequence with sheets at levels
[0 .. 2] each consisting of right modules at bidegrees [0 .. 1]x
[-1 .. 0]>
gap> Display(I_E);
a cohomological spectral sequence at bidegrees
[[0 .. 1], [-1 .. 0]]

Level 0:

* *
* *

Level 1:

* *
. .

Level 2:

s s
. .

Legend:

• A star * stands for a nonzero object.

• A dot . stands for a zero object.

• The letter s stands for a nonzero object that became stable.

The second spectral sequence of the bicomplex is, by definition, the spectral sequence associated
to the transposed bicomplex:

homalg 57

Example
gap> tB := TransposedBicomplex(B);
<A non-zero bicocomplex containing right modules at bidegrees [-1 .. 0]x
[0 .. 1]>
gap> II_E := HomalgSpectralSequence(tB, 2);
<A stable cohomological spectral sequence with sheets at levels
[0 .. 2] each consisting of right modules at bidegrees [-1 .. 0]x
[0 .. 1]>
gap> Display(II_E);
a cohomological spectral sequence at bidegrees
[[-1 .. 0], [0 .. 1]]

Level 0:

* *
* *

Level 1:

* *
* *

Level 2:

s s
. s

10.3 Spectral Sequences: Attributes

10.3.1 GeneralizedEmbeddingsInTotalObjects

. GeneralizedEmbeddingsInTotalObjects(E) (attribute)

Returns: a record containing homalg maps
The generalized embbedings of the objects in the stable sheet into the objects of the associated

total complex.

10.3.2 GeneralizedEmbeddingsInTotalDefects

. GeneralizedEmbeddingsInTotalDefects(E) (attribute)

Returns: a record containing homalg maps
The generalized embbedings of the objects in the stable sheet into the defects of the associated

total complex.

10.4 Spectral Sequences: Operations and Functions

10.4.1 ByASmallerPresentation (for spectral sequences)

. ByASmallerPresentation(E) (method)

Returns: a homalg spectral sequence

homalg 58

See ByASmallerPresentation (9.4.1) on bigraded object.
Code

InstallMethod(ByASmallerPresentation,
"for homalg spectral sequences",
[IsHomalgSpectralSequence],

function(E)

ByASmallerPresentation(HighestLevelSheetInSpectralSequence(E));

if IsBound(E!.TransposedSpectralSequence) then
ByASmallerPresentation(E!.TransposedSpectralSequence);

fi;

return E;

end);

This method performs side effects on its argument E and returns it.

Chapter 11

Functors

Functors and their natural transformations form the heart of the homalg package. Usually, a functor
is realized in computer algebra systems as a procedure which can be applied to a certain type of
objects. In [BR08] it was explained how to implement a functor of Abelian categories – by itself – as
an object which can be further manipulated (composed, derived, ...). So in addition to the constructor
CreateHomalgFunctor (11.2.1) which is used to create functors from scratch, homalg provides
further easy-to-use constructors to create new functors out of existing ones:

• InsertObjectInMultiFunctor (11.2.2)

• RightSatelliteOfCofunctor (11.2.3)

• LeftSatelliteOfFunctor (11.2.4)

• RightDerivedCofunctor (11.2.5)

• LeftDerivedFunctor (11.2.6)

• ComposeFunctors (11.2.7)

In homalg each functor is implemented as a GAP4 object.
So-called installers (→ InstallFunctor (11.7.1) and InstallDeltaFunctor (11.7.2)) take

such a functor object and create operations in order to apply the functor on objects, mor-
phisms, complexes (of objects or again of complexes), and chain morphisms. The installer
InstallDeltaFunctor (11.7.2) creates additional operations for δ -functors in order to compute
connecting homomorphisms, exact triangles, and associated long exact sequences by starting with a
short exact sequence.

In homalg special emphasis is laid on the action of functors on morphisms, as an essential part
of the very definition of a functor. This is for no obvious reason often neglected in computer algebra
systems. Starting from a functor where the action on morphisms is also defined, all the above con-
structors again create functors with actions both on objects and on morphisms (and hence on chain
complexes and chain morphisms).

It turned out that in a variety of situations a caching mechanism for functors is not only extremely
useful (e.g. to avoid repeated expensive computations) but also an absolute necessity for the coherence
of data. Functors in homalg are therefore endowed with a caching mechanism.

If R is a homalg ring in which the component R!.ByASmallerPresentation is set to true

59

homalg 60

R!.ByASmallerPresentation := true;

any functor which returns an object over R will first apply ByASmallerPresentation to its
result before returning it.

One of the highlights in homalg is the computation of Grothendieck’s spectral sequences con-
necting the composition of the derivations of two functors with the derived functor of their composite.

11.1 Functors: Category and Representations

11.1.1 IsHomalgFunctor

. IsHomalgFunctor(F) (Category)

Returns: true or false
The GAP category of homalg (multi-)functors.

11.1.2 IsHomalgFunctorRep

. IsHomalgFunctorRep(E) (Representation)

Returns: true or false
The GAP representation of homalg (multi-)functors.
(It is a representation of the GAP category IsHomalgFunctor (11.1.1).)

11.2 Functors: Constructors

11.2.1 CreateHomalgFunctor (constructor for functors)

. CreateHomalgFunctor(list1, list2, ...) (function)

Returns: a homalg functor
This constructor is used to create functors for homalg from scratch. listN is of the form

listN = [stringN, valueN] . stringN will be the name of a component of the created functor
and valueN will be its value. This constructor is listed here for the sake of completeness. Its docu-
mentation is rather better placed in a homalg programmers guide. The remaining constructors create
new functors out of existing ones and are probably more interesting for end users.

The constructor does not invoke InstallFunctor (11.7.1). This has to be done manually!

11.2.2 InsertObjectInMultiFunctor (constructor for functors given a multi-functor
and an object)

. InsertObjectInMultiFunctor(F, p, obj, H) (operation)

Returns: a homalg functor
Given a homalg multi-functor F with multiplicity m and a string H return the functor Functor_H

:= F(...,obj , ...), where obj is inserted at the p -th position. Of course obj must be an object (e.g.
ring, module, ...) that can be inserted at this particular position. The string H becomes the name of
the returned functor (→ NameOfFunctor (11.3.1)). The variable Functor_H will automatically be
assigned if free, otherwise a warning is issued.

The constructor automatically invokes InstallFunctor (11.7.1) which installs several necessary
operations under the name H .

homalg 61

Example
gap> ZZ := HomalgRingOfIntegers();
Z
gap> ZZ * 1;
<The free right module of rank 1 on a free generator>
gap> InsertObjectInMultiFunctor(Functor_Hom_for_fp_modules, 2, ZZ * 1, "Hom_ZZ");
<The functor Hom_ZZ for f.p. modules and their maps over computable rings>
gap> Functor_Hom_ZZ_for_fp_modules; ## got automatically defined
<The functor Hom_ZZ for f.p. modules and their maps over computable rings>
gap> Hom_ZZ; ## got automatically defined
<Operation "Hom_ZZ">

11.2.3 RightSatelliteOfCofunctor (constructor of the right satellite of a contravariant
functor)

. RightSatelliteOfCofunctor(F[, p][, H]) (operation)

Returns: a homalg functor
Given a homalg (multi-)functor F and a string H return the right satellite of F with respect to its

p -th argument. F is assumed contravariant in its p -th argument. The string H becomes the name of
the returned functor (→ NameOfFunctor (11.3.1)). The variable Functor_H will automatically be
assigned if free, otherwise a warning is issued.

If p is not specified it is assumed 1. If the string H is not specified the letter ’S’ is added to the left
of the name of F (→ NameOfFunctor (11.3.1)).

The constructor automatically invokes InstallFunctor (11.7.1) which installs several necessary
operations under the name H .

11.2.4 LeftSatelliteOfFunctor (constructor of the left satellite of a covariant functor)

. LeftSatelliteOfFunctor(F[, p][, H]) (operation)

Returns: a homalg functor
Given a homalg (multi-)functor F and a string H return the left satellite of F with respect to its

p -th argument. F is assumed covariant in its p -th argument. The string H becomes the name of
the returned functor (→ NameOfFunctor (11.3.1)). The variable Functor_H will automatically be
assigned if free, otherwise a warning is issued.

If p is not specified it is assumed 1. If the string H is not specified the string “S_” is added to the
left of the name of F (→ NameOfFunctor (11.3.1)).

The constructor automatically invokes InstallFunctor (11.7.1) which installs several necessary
operations under the name H .

11.2.5 RightDerivedCofunctor (constructor of the right derived functor of a con-
travariant functor)

. RightDerivedCofunctor(F[, p][, H]) (operation)

Returns: a homalg functor
Given a homalg (multi-)functor F and a string H return the right derived functor of F with respect

to its p -th argument. F is assumed contravariant in its p -th argument. The string H becomes the name
of the returned functor (→ NameOfFunctor (11.3.1)). The variable Functor_H will automatically be
assigned if free, otherwise a warning is issued.

homalg 62

If p is not specified it is assumed 1. If the string H is not specified the letter ’R’ is added to the
left of the name of F (→ NameOfFunctor (11.3.1)).

The constructor automatically invokes InstallFunctor (11.7.1) and InstallDeltaFunctor
(11.7.2) which install several necessary operations under the name H .

11.2.6 LeftDerivedFunctor (constructor of the left derived functor of a covariant func-
tor)

. LeftDerivedFunctor(F[, p][, H]) (operation)

Returns: a homalg functor
Given a homalg (multi-)functor F and a string H return the left derived functor of F with respect

to its p -th argument. F is assumed covariant in its p -th argument. The string H becomes the name
of the returned functor (→ NameOfFunctor (11.3.1)). The variable Functor_H will automatically be
assigned if free, otherwise a warning is issued.

If p is not specified it is assumed 1. If the string H is not specified the letter “S_” is added to the
left of the name of F (→ NameOfFunctor (11.3.1)).

The constructor automatically invokes InstallFunctor (11.7.1) and InstallDeltaFunctor
(11.7.2) which install several necessary operations under the name H .

11.2.7 ComposeFunctors (constructor for functors given two functors)

. ComposeFunctors(F[, p], G[, H]) (operation)

Returns: a homalg functor
Given two homalg (multi-)functors F and G and a string H return the composed functor

Functor_H := F(...,G(...), ...), where G is inserted at the p -th position. Of course G must be a
functor that can be inserted at this particular position. The string H becomes the name of the returned
functor (→ NameOfFunctor (11.3.1)). The variable Functor_H will automatically be assigned if
free, otherwise a warning is issued.

If p is not specified it is assumed 1. If the string H is not specified the names of F and G are
concatenated in this order (→ NameOfFunctor (11.3.1)).

F * G is a shortcut for ComposeFunctors(F ,1,G).
The constructor automatically invokes InstallFunctor (11.7.1) which installs several necessary

operations under the name H .
Check this:

Example
gap> Functor_Hom_for_fp_modules * Functor_TensorProduct_for_fp_modules;
<The functor HomTensorProduct for f.p. modules and their maps over computable \
rings>
gap> Functor_HomTensorProduct_for_fp_modules; ## got automatically defined
<The functor HomTensorProduct for f.p. modules and their maps over computable \
rings>
gap> HomTensorProduct; ## got automatically defined
<Operation "HomTensorProduct">

homalg 63

11.3 Functors: Attributes

11.3.1 NameOfFunctor

. NameOfFunctor(F) (attribute)

Returns: a string
The name of the homalg functor F .

Example
gap> NameOfFunctor(Functor_Ext_for_fp_modules);
"Ext"
gap> Display(Functor_Ext_for_fp_modules);
Ext

11.3.2 OperationOfFunctor

. OperationOfFunctor(F) (attribute)

Returns: an operation
The operation of the functor F .

Example
gap> Functor_Ext_for_fp_modules;
<The functor Ext for f.p. modules and their maps over computable rings>
gap> OperationOfFunctor(Functor_Ext_for_fp_modules);
<Operation "Ext">

11.3.3 Genesis

. Genesis(F) (attribute)

Returns: a list
The first entry of the returned list is the name of the constructor used to create the functor F . The

reset of the list contains arguments that were passed to this constructor for creating F .
These are examples of different functors created using the different constructors:

• CreateHomalgFunctor:
Example

gap> Functor_Hom_for_fp_modules;
<The functor Hom for f.p. modules and their maps over computable rings>

• InsertObjectInMultiFunctor:
Example

gap> ZZ := HomalgRingOfIntegers();
Z
gap> LeftDualizingFunctor(ZZ, "ZZ_Hom");
<The functor ZZ_Hom for f.p. modules and their maps over computable rings>
gap> Functor_ZZ_Hom_for_fp_modules; ## got automatically defined
<The functor ZZ_Hom for f.p. modules and their maps over computable rings>
gap> ZZ_Hom; ## got automatically defined
<Operation "ZZ_Hom">
gap> Genesis(Functor_ZZ_Hom_for_fp_modules);
["InsertObjectInMultiFunctor",

<The functor Hom for f.p. modules and their maps over computable rings>, 2,

homalg 64

<The free left module of rank 1 on a free generator>]
gap> 1 * ZZ;
<The free left module of rank 1 on a free generator>

• LeftDerivedFunctor:
Example

gap> Functor_TensorProduct_for_fp_modules;
<The functor TensorProduct for f.p. modules and their maps over computable rin\
gs>
gap> Genesis(Functor_LTensorProduct_for_fp_modules);
["LeftDerivedFunctor",

<The functor TensorProduct for f.p. modules and their maps over computable r\
ings>, 1]

• RightDerivedCofunctor:
Example

gap> Genesis(Functor_RHom_for_fp_modules);
["RightDerivedCofunctor",

<The functor Hom for f.p. modules and their maps over computable rings>, 1]

• LeftSatelliteOfFunctor:
Example

gap> Genesis(Functor_Tor_for_fp_modules);
["LeftSatelliteOfFunctor",

<The functor TensorProduct for f.p. modules and their maps over computable r\
ings>, 1]

• RightSatelliteOfCofunctor:
Example

gap> Genesis(Functor_Ext_for_fp_modules);
["RightSatelliteOfCofunctor",

<The functor Hom for f.p. modules and their maps over computable rings>, 1]

• ComposeFunctors:
Example

gap> Genesis(Functor_HomHom_for_fp_modules);
["ComposeFunctors",

[<The functor Hom for f.p. modules and their maps over computable rings>,
<The functor Hom for f.p. modules and their maps over computable rings>

], 1]
gap> ValueGlobal("ComposeFunctors");
<Operation "ComposeFunctors">

11.3.4 ProcedureToReadjustGenerators (for functors)

. ProcedureToReadjustGenerators(Functor) (attribute)

Returns: a function

homalg 65

11.4 Basic Functors

11.4.1 functor_Kernel

. functor_Kernel (global variable)

The functor that associates to a map its kernel.
Code

InstallValue(functor_Kernel,
CreateHomalgFunctor(

["name", "Kernel"],
["category", HOMALG.category],
["operation", "Kernel"],
["natural_transformation", "KernelEmb"],
["special", true],
["number_of_arguments", 1],
["1", [["covariant"],

[IsStaticMorphismOfFinitelyGeneratedObjectsRep,
[IsHomalgChainMorphism, IsKernelSquare]]]],

["OnObjects", _Functor_Kernel_OnObjects]
)

);

11.4.2 functor_DefectOfExactness

. functor_DefectOfExactness (global variable)

The functor that associates to a pair of composable maps with a zero compositum the defect of
exactness, i.e. the kernel of the outer map modulo the image of the inner map.

Code
InstallValue(functor_DefectOfExactness,

CreateHomalgFunctor(
["name", "DefectOfExactness"],
["category", HOMALG.category],
["operation", "DefectOfExactness"],
["special", true],
["number_of_arguments", 2],
["1", [["covariant"],

[IsStaticMorphismOfFinitelyGeneratedObjectsRep,
[IsHomalgChainMorphism, IsLambekPairOfSquares]]]],

["2", [["covariant"],
[IsStaticMorphismOfFinitelyGeneratedObjectsRep]]],

["OnObjects", _Functor_DefectOfExactness_OnObjects]
)

);

homalg 66

11.5 Tool Functors

11.6 Other Functors

11.7 Functors: Operations and Functions

11.7.1 InstallFunctor

. InstallFunctor(F) (operation)

Install several methods for GAP operations that get declared under the name of the homalg (multi-
)functor F (→ NameOfFunctor (11.3.1)). These methods are used to apply the functor to objects,
morphisms, (co)complexes of objects, and (co)chain morphisms. The objects in the (co)complexes
might again be (co)complexes.

(For purely technical reasons the multiplicity of the functor might at most be three. This restriction
should disappear in future versions.)

Code
InstallMethod(InstallFunctor,

"for homalg functors",
[IsHomalgFunctorRep],

function(Functor)

InstallFunctorOnObjects(Functor);

if IsSpecialFunctor(Functor) then

InstallSpecialFunctorOnMorphisms(Functor);

else

InstallFunctorOnMorphisms(Functor);

InstallFunctorOnComplexes(Functor);

InstallFunctorOnChainMorphisms(Functor);

fi;

end);

The method does not return anything.

11.7.2 InstallDeltaFunctor

. InstallDeltaFunctor(F) (operation)

In case F is a δ -functor in the sense of Grothendieck the procedure installs several operations un-
der the name of the homalg (multi-)functor F (→ NameOfFunctor (11.3.1)) allowing one to compute

homalg 67

connecting homomorphisms, exact triangles, and associated long exact sequences. The input of these
operations is a short exact sequence.

(For purely technical reasons the multiplicity of the functor might at most be three. This restriction
should disappear in future versions.)

Code
InstallMethod(InstallDeltaFunctor,

"for homalg functors",
[IsHomalgFunctorRep],

function(Functor)
local number_of_arguments;

number_of_arguments := MultiplicityOfFunctor(Functor);

if number_of_arguments = 1 then

HelperToInstallUnivariateDeltaFunctor(Functor);

elif number_of_arguments = 2 then

HelperToInstallFirstArgumentOfBivariateDeltaFunctor(Functor);
HelperToInstallSecondArgumentOfBivariateDeltaFunctor(Functor);

elif number_of_arguments = 3 then

HelperToInstallFirstArgumentOfTrivariateDeltaFunctor(Functor);
HelperToInstallSecondArgumentOfTrivariateDeltaFunctor(Functor);
HelperToInstallThirdArgumentOfTrivariateDeltaFunctor(Functor);

fi;

end);

The method does not return anything.

Chapter 12

Examples

12.1 ExtExt

This corresponds to Example B.2 in [Bar].
Example

gap> ZZ := HomalgRingOfIntegers();
Z
gap> imat := HomalgMatrix("[\
> 262, -33, 75, -40, \
> 682, -86, 196, -104, \
> 1186, -151, 341, -180, \
> -1932, 248, -556, 292, \
> 1018, -127, 293, -156 \
>]", 5, 4, ZZ);
<A 5 x 4 matrix over an internal ring>
gap> M := LeftPresentation(imat);
<A left module presented by 5 relations for 4 generators>
gap> N := Hom(ZZ, M);
<A rank 1 right module on 4 generators satisfying yet unknown relations>
gap> F := InsertObjectInMultiFunctor(Functor_Hom_for_fp_modules, 2, N, "TensorN");
<The functor TensorN for f.p. modules and their maps over computable rings>
gap> G := LeftDualizingFunctor(ZZ);;
gap> II_E := GrothendieckSpectralSequence(F, G, M);
<A stable homological spectral sequence with sheets at levels
[0 .. 2] each consisting of left modules at bidegrees [-1 .. 0]x
[0 .. 1]>
gap> Display(II_E);
The associated transposed spectral sequence:

a homological spectral sequence at bidegrees
[[0 .. 1], [-1 .. 0]]

Level 0:

* *
* *

Level 1:

68

homalg 69

* *
. .

Level 2:

s s
. .

Now the spectral sequence of the bicomplex:

a homological spectral sequence at bidegrees
[[-1 .. 0], [0 .. 1]]

Level 0:

* *
* *

Level 1:

* *
. s

Level 2:

s s
. s

gap> filt := FiltrationBySpectralSequence(II_E, 0);
<An ascending filtration with degrees [-1 .. 0] and graded parts:

0: <A non-torsion left module presented by 3 relations for 4 generators>
-1: <A non-zero left module presented by 33 relations for 8 generators>

of
<A non-zero left module presented by 27 relations for 19 generators>>
gap> ByASmallerPresentation(filt);
<An ascending filtration with degrees [-1 .. 0] and graded parts:

0: <A rank 1 left module presented by 2 relations for 3 generators>

-1: <A non-zero torsion left module presented by 6 relations for 6 generators>
of
<A rank 1 left module presented by 8 relations for 9 generators>>
gap> m := IsomorphismOfFiltration(filt);
<A non-zero isomorphism of left modules>

12.2 Purity

This corresponds to Example B.3 in [Bar].
Example

gap> ZZ := HomalgRingOfIntegers();
Z
gap> imat := HomalgMatrix("[\
> 262, -33, 75, -40, \

homalg 70

> 682, -86, 196, -104, \
> 1186, -151, 341, -180, \
> -1932, 248, -556, 292, \
> 1018, -127, 293, -156 \
>]", 5, 4, ZZ);
<A 5 x 4 matrix over an internal ring>
gap> M := LeftPresentation(imat);
<A left module presented by 5 relations for 4 generators>
gap> filt := PurityFiltration(M);
<The ascending purity filtration with degrees [-1 .. 0] and graded parts:

0: <A free left module of rank 1 on a free generator>

-1: <A non-zero torsion left module presented by 2 relations for 2 generators>
of
<A non-pure rank 1 left module presented by 2 relations for 3 generators>>
gap> M;
<A non-pure rank 1 left module presented by 2 relations for 3 generators>
gap> II_E := SpectralSequence(filt);
<A stable homological spectral sequence with sheets at levels
[0 .. 2] each consisting of left modules at bidegrees [-1 .. 0]x
[0 .. 1]>
gap> Display(II_E);
The associated transposed spectral sequence:

a homological spectral sequence at bidegrees
[[0 .. 1], [-1 .. 0]]

Level 0:

* *
* *

Level 1:

* *
. .

Level 2:

s .
. .

Now the spectral sequence of the bicomplex:

a homological spectral sequence at bidegrees
[[-1 .. 0], [0 .. 1]]

Level 0:

* *
* *

Level 1:

homalg 71

* *
. s

Level 2:

s .
. s

gap> m := IsomorphismOfFiltration(filt);
<A non-zero isomorphism of left modules>
gap> IsIdenticalObj(Range(m), M);
true
gap> Source(m);
<A non-torsion left module presented by 2 relations for 3 generators (locked)>
gap> Display(last);
[[0, 2, 0],

[0, 0, 12]]

Cokernel of the map

Z^(1x2) --> Z^(1x3),

currently represented by the above matrix
gap> Display(filt);
Degree 0:

Z^(1 x 1)

Degree -1:

Z/< 2 > + Z/< 12 >

12.3 TorExt-Grothendieck

This corresponds to Example B.5 in [Bar].
Example

gap> ZZ := HomalgRingOfIntegers();
Z
gap> imat := HomalgMatrix("[\
> 262, -33, 75, -40, \
> 682, -86, 196, -104, \
> 1186, -151, 341, -180, \
> -1932, 248, -556, 292, \
> 1018, -127, 293, -156 \
>]", 5, 4, ZZ);
<A 5 x 4 matrix over an internal ring>
gap> M := LeftPresentation(imat);
<A left module presented by 5 relations for 4 generators>
gap> F := InsertObjectInMultiFunctor(Functor_TensorProduct_for_fp_modules, 2, M, "TensorM");
<The functor TensorM for f.p. modules and their maps over computable rings>
gap> G := LeftDualizingFunctor(ZZ);;

homalg 72

gap> II_E := GrothendieckSpectralSequence(F, G, M);
<A stable cohomological spectral sequence with sheets at levels
[0 .. 2] each consisting of left modules at bidegrees [-1 .. 0]x
[0 .. 1]>
gap> Display(II_E);
The associated transposed spectral sequence:

a cohomological spectral sequence at bidegrees
[[0 .. 1], [-1 .. 0]]

Level 0:

* *
* *

Level 1:

* *
. .

Level 2:

s s
. .

Now the spectral sequence of the bicomplex:

a cohomological spectral sequence at bidegrees
[[-1 .. 0], [0 .. 1]]

Level 0:

* *
* *

Level 1:

* *
. s

Level 2:

s s
. s

gap> filt := FiltrationBySpectralSequence(II_E, 0);
<A descending filtration with degrees [-1 .. 0] and graded parts:

-1: <A non-zero left module presented by yet unknown relations for 9 generator\
s>

0: <A non-zero left module presented by yet unknown relations for 4 generators\
>
of

homalg 73

<A left module presented by yet unknown relations for 29 generators>>
gap> ByASmallerPresentation(filt);
<A descending filtration with degrees [-1 .. 0] and graded parts:

-1: <A non-zero torsion left module presented by 4 relations
for 4 generators>

0: <A rank 1 left module presented by 2 relations for 3 generators>
of
<A rank 1 left module presented by 6 relations for 7 generators>>
gap> m := IsomorphismOfFiltration(filt);
<A non-zero isomorphism of left modules>

12.4 TorExt

This corresponds to Example B.6 in [Bar].
Example

gap> ZZ := HomalgRingOfIntegers();
Z
gap> imat := HomalgMatrix("[\
> 262, -33, 75, -40, \
> 682, -86, 196, -104, \
> 1186, -151, 341, -180, \
> -1932, 248, -556, 292, \
> 1018, -127, 293, -156 \
>]", 5, 4, ZZ);
<A 5 x 4 matrix over an internal ring>
gap> M := LeftPresentation(imat);
<A left module presented by 5 relations for 4 generators>
gap> P := Resolution(M);
<A non-zero right acyclic complex containing a single morphism of left modules\
at degrees [0 .. 1]>

gap> GP := Hom(P);
<A non-zero acyclic cocomplex containing a single morphism of right modules at\
degrees [0 .. 1]>

gap> FGP := GP * P;
<A non-zero acyclic cocomplex containing a single morphism of left complexes a\
t degrees [0 .. 1]>
gap> BC := HomalgBicomplex(FGP);
<A non-zero bicocomplex containing left modules at bidegrees [0 .. 1]x
[-1 .. 0]>
gap> p_degrees := ObjectDegreesOfBicomplex(BC)[1];
[0, 1]
gap> II_E := SecondSpectralSequenceWithFiltration(BC, p_degrees);
<A stable cohomological spectral sequence with sheets at levels
[0 .. 2] each consisting of left modules at bidegrees [-1 .. 0]x
[0 .. 1]>
gap> Display(II_E);
The associated transposed spectral sequence:

a cohomological spectral sequence at bidegrees
[[0 .. 1], [-1 .. 0]]

homalg 74

Level 0:

* *
* *

Level 1:

* *
. .

Level 2:

s s
. .

Now the spectral sequence of the bicomplex:

a cohomological spectral sequence at bidegrees
[[-1 .. 0], [0 .. 1]]

Level 0:

* *
* *

Level 1:

* *
* *

Level 2:

s s
. s

gap> filt := FiltrationBySpectralSequence(II_E, 0);
<A descending filtration with degrees [-1 .. 0] and graded parts:

-1: <A non-zero torsion left module presented by yet unknown relations for
10 generators>

0: <A rank 1 left module presented by 3 relations for 4 generators>
of
<A left module presented by yet unknown relations for 13 generators>>
gap> ByASmallerPresentation(filt);
<A descending filtration with degrees [-1 .. 0] and graded parts:

-1: <A non-zero torsion left module presented by 4 relations
for 4 generators>

0: <A rank 1 left module presented by 2 relations for 3 generators>
of
<A rank 1 left module presented by 6 relations for 7 generators>>
gap> m := IsomorphismOfFiltration(filt);
<A non-zero isomorphism of left modules>

Appendix A

The Mathematical Idea behind homalg

75

Appendix B

Development

B.1 Why was homalg discontinued in Maple?

The original implementation of homalg in Maple by Daniel Robertz and myself hit several walls.
The speed of the Gröbner basis routines in Maple was the smallest issue. The rising complexity of
data structures for high level algorithms (bicomplexes, functors, spectral sequences, ...) became the
main problem. We very much felt the need for an object-oriented programming language, a language
that allows defining complicated mathematical objects carrying properties and attributes and even
containing other objects as subobjects.

As we were pushed to look for an alternative to Maple, our wish list grew even further. Section
B.2 is a summary of this wish list.

B.2 Why GAP4?

B.2.1 GAP is free and open software

In 1993 J. Neubüser addressed the necessity of free software in mathematics:
“You can read Sylow’s Theorem and its proof in Huppert’s book in the library without even buying

the book and then you can use Sylow’s Theorem for the rest of your life free of charge, but - and for
understandable reasons of getting funds for the maintenance, the necessity of which I have pointed
out [...] - for many computer algebra systems license fees have to be paid regularly for the total time
of their use. In order to protect what you pay for, you do not get the source, but only an executable,
i.e. a black box. You can press buttons and you get answers in the same way as you get the bright
pictures from your television set but you cannot control how they were made in either case.

With this situation two of the most basic rules of conduct in mathematics are violated. In mathe-
matics information is passed on free of charge and everything is laid open for checking. Not applying
these rules to computer algebra systems that are made for mathematical research [...] means moving
in a most undesirable direction. Most important: Can we expect somebody to believe a result of a pro-
gram that he is not allowed to see? [...] And even: If O’Nan and Scott would have to pay a license fee
for using an implementation of their ideas about primitive groups, should not they in turn be entitled
to charge a license fee for using their ideas in the implementation?”

I had the pleasure of being one of his students.
The detailed copyright for GAP can found on the GAP homepage under Start – Download –

Copyright.

76

http://www.maplesoft.com/
http://www.gap-system.org/
http://www.gap-system.org/Doc/Talks/cgt.ps
http://www.gap-system.org/Download/copyright.html#free
http://www.gap-system.org/Download/copyright.html#free

homalg 77

B.2.2 GAP has an area of expertise

Not only does GAP have the potential of natively supporting a wide range of mathematical structures,
but finite groups and their representation theory are already an area of expertise. So there are at least
some areas where one does not need to start from scratch.

But one could argue that rings are more central for homological algebra than finite groups, and
that GAP4, as for the time when the homalg project was shaping, does not seriously support im-
portant rings in a manner that enables homological computations. This drawback would favor, for
example, Singular (with its subsystem Plural) over GAP4. Point B.2.3 indicates how this drawback
was overcome in a way, that even gave the lead back to GAP4.

One of my future plans for the homalg project is to address moduli problems in algebraic geome-
try (favorably via orbifold stacks), where discrete groups (and especially finite groups) play a central
role. As of the time of writing these lines, discrete groups, finite groups, and orbifolds are already in
the focus of part of the project: The package SCO by Simon Görtzen to compute the cohomology of
orbifolds is part of the currently available homalg project.

For the remaining points the choice of GAP4 as the programming language for developing
homalg was unavoidable.

B.2.3 GAP4 can communicate

With the excellent IO package of Max Neunhöffer GAP4 is able to communicate in an extremely
efficient way with the outer world via bidirectional streams. This allows homalg to delegate things
that cannot be done in GAP to an external system such as Singular, Sage, Macaulay2, MAGMA, or
Maple.

B.2.4 GAP4 is a mathematical object-oriented programming language

The object-oriented programming philosophy of GAP4 was developed by mathematicians who
wanted to handle complex mathematical objects carrying properties and attributes, as often encoun-
tered in algebra and geometry. GAP4 was thus designed to address the needs of mathematical
object-oriented programming more than any other language designed by computer scientists. This
was primarily achieved by the advanced method selection techniques that very much resemble the
mathematical way of thinking.

Unlike the common object-oriented programming languages, methods in GAP4 are not bound
to objects but to operations. In particular, one can also install methods that depend on two or more
arguments. The index of a subgroup is an easy example of an operation illustrating this. While it
would be sufficient to bind a method for computing the order of a group to the object representing
the group, it is not clear what to do with the index, since its definition involves two objects: a group
G and a subgroup U . Note that the index of U in a subgroup of G containing U might also be of
interest. Things become even more complicated when the arguments of the operation are unrelated
objects. Moreover, binding methods to operations makes it possible for the programming language to
support the installation of one or more methods for the same operation, depending on already known
properties or attributes of the involved objects.

Moreover GAP4 supports so-called immediate and true methods. This considerably simplifies
teaching theorems to the computer. For example it takes one line of code to teach GAP4 that a
reflexive left module over a ring with left global dimension less or equal to two is projective. These
logical implications are installed globally and GAP4 immediately uses them as soon as the respective
assumptions are fulfilled. This mechanism enables GAP4 to draw arbitrary long lines of conclusions.

http://www.singular.uni-kl.de/
http://www-groups.mcs.st-and.ac.uk/~neunhoef/Computer/Software/Gap/io.html

homalg 78

The more one knows about the objects involved in the computation the more specialized efficient
algorithms can be utilized, while other computations can be completely avoided. homalg is equipped
with plenty of logical implications for rings, matrices, modules, morphisms, and complexes.

When all these features become relevant to what you want to do, there is hardly an alternative to
GAP4.

B.2.5 GAP4 packages are easily extendible

Being able to install several methods for a single operation (→ B.2.4) has the additional advantage of
making GAP4 packages easily extendible. If you have an algorithm that, in a special case, performs
better than existing algorithms you can install it as a method which gets triggered when the special
case occurs. You don’t need to break existing code to insert an additional elif section contributing
to an increasing unreadability of the code. Even better, you don’t even need to know anything about
the code of other existing methods. In addition to that, you can add (maybe missing) properties and
attributes (along with methods to compute them) to existing objects.

B.3 Why not Sage?

Although the python-based Sage fulfills most of the above requirements, it was primarily the points
expressed in B.2.4 that finally favored GAP4 over Sage: The object-orientedness of python, although
very modern, does not cover the needs of the homalg package. At this place I would like to thank
William Stein for the helpful discussion about Sage during the early stage of developing homalg, and
to Max Neunhöffer who explained me the advantages of the object-oriented programming in GAP4.

B.4 How does homalg compare to Sage?

In what follows homalg often refers to the whole homalg project.

B.4.1 They differ in objectives and scale

First of all, Sage is a huge project, that, among other things, is intended to replace commercial,
general purpose computer algebra systems like Maple and Mathematica. So while Sage targets (a
growing number of) different fields of computer algebra, homalg only focuses on homological, and
hopefully in the near future also homotopical techniques (applicable to some of these different fields).
The two projects simply follow different goals and are different in scale.

B.4.2 They differ in the programming language

Sage is based on python and the C-extension cython while homalg is based on GAP4. Quoting
from an email response William Stein sent me on the 25. of February, 2008: “Sage *is* Python
+ a library”. Although I seriously considered developing homalg as part of Sage, for the reason
mentioned in B.2.4 I finally decided to use GAP4 as the programming language.

B.4.3 They differ in the way they communicate with the outer world

Both Sage and homalg rely for many things on external computer algebra systems. But although
one can simply invoke a GAP shell or a Singular shell from within Sage, Sage normally runs

http://www.sagemath.org/
http://modular.math.washington.edu/

homalg 79

the external computer algebra systems in the background and tries to understand the internals of the
objects residing in them. An object in the external computer algebra system is wrapped by an object
in Sage and supporting this external object involves understanding its details in the external system.
homalg follows a different strategy: The only external objects homalg needs (beside rings) are non-
empty matrices. And being zero or not is basically the only thing homalg wants to know about a
matrix after knowing its dimension. I myself was stunned by this insight, which culminated in the
principle of least communication (→Modules: The principle of least communication (technical)).

In particular, Sage can make use of all of homalg, but for in order to make full use, Sage needs
to understand the internals of the homalg objects. On the contrary, homalg can only make limited
use of Sage (or of virtually any computer algebra system that supports rings in a sufficient way (→
(Modules: Rings supported in a sufficient way))), but without the need to delve into the inner life
of the Sage objects.

Appendix C

Logic Subpackages

C.1 LIOBJ: Logical Implications for Objects of Abelian Categories

C.2 LIMOR: Logical Implications for Morphisms of Abelian Categories

C.3 LICPX: Logical Implications for Complexes in Abelian Categories

80

Appendix D

Debugging homalg

Beside the GAP builtin debugging facilities (→ (Reference: Debugging and Profiling Facilities))
homalg provides two ways to debug the computations.

D.1 Increase the assertion level

homalg comes with numerous builtin assertion checks. They are activated if the user increases the
assertion level using

SetAssertionLevel(level);

(→ (Reference: SetAssertionLevel)), where level is one of the values below:

level description

0 no assertion checks whatsoever

3 “high”-level homological assertions are checked

4 “mid”-level homological assertions are checked

5 “low”-level homological assertions are checked

6 assertions about basic matrix operations are checked (→ Appendices of the MatricesForHomalg package)
(these are among the operations often delegated to external systems)

In particular, if homalg delegates matrix operations to an external system then
SetAssertionLevel(4); can be used to let homalg debug the external system.

81

Appendix E

The Core Packages and the Idea behind
their Splitting

I will try to explain the idea behind splitting the 6 core packages:

1. homalg

2. Modules

3. HomalgToCAS

4. IO_ForHomalg

5. RingsForHomalg

6. ExamplesForHomalg

E.1 The 6=2+4 split

The following is an attempt to explain the 6=2+4 split.

E.1.1 Logically independent

The package homalg is logically independent from all other packages in the project. And among the
six core packages it is together with Modules the only package that has to do with mathematics. The
remaining four packages are of technical nature. More precisely, homalg is a stand alone package,
that offers abstract homological constructions for computable Abelian categories. But since the ring
of integers (at least up till now) is the only ring which for the purposes of homological algebra is suf-
ficiently supported in GAP (→ (Modules: Rings supported in a sufficient way)), Modules can put
the above mentioned abstract constructions into action only for the ring of integers and by generic (but
of course non-efficient) methods for any of its residue class rings (Simon Görtzen’s package Gauss
adds the missing sufficient support for Z/pn and Q to GAP and his other package GaussForHomalg
makes this support visible to Modules).

82

homalg 83

E.1.2 Black boxes

The package Modules uses rings and matrices over these rings as a black box, enabling other packages
to “abuse” homalg to compute over rings other than the ring of integers by simply providing the
appropriate black boxes. And whether these rings and matrices are inside or outside GAP is not at all
the concern of homalg. Even the GAP representation for external rings, external ring elements, and
external matrices are declared in the package HomalgToCAS and not in homalg.

E.1.3 Summing up

One of the main concepts of the homalg project is that high level and low level computations in
homological algebra can and should be separated. So splitting homalg from the remaining 4 core
packages is just emphasizing this concept. Moreover, homalg is up till now by far the biggest package
in the project and will probably keep growing by supporting more basic homological constructions,
whereas the other 4 packages will remain stable over longer time intervals.

E.2 The 4=1+1+1+1 split

The following is meant to justify the remaining 4=1+1+1+1 split.

E.2.1 HomalgToCAS

The package HomalgToCAS (which needs the homalg package) includes all what is needed to let
the black boxes used by homalg reside in external computer algebra systems. So as mentioned above,
HomalgToCAS is the right place to declare the three GAP representations external rings, external
ring elements, and external matrices. Still, HomalgToCAS is independent from the external com-
puter algebra system with which GAP will communicate and independent of how this communication
physically looks like.

E.2.2 IO_ForHomalg and Alternatives

The package IO_ForHomalg (which needs HomalgToCAS) allows GAP to communicate via I/O-
streams with computer algebra systems that come with a terminal interface. IO_ForHomalg uses
Max Neunhöffer’s IO package, yet it is independent from the specific computer algebra system, as
long as the latter provides a terminal interface. Splitting IO_ForHomalg from HomalgToCAS gives
the freedom to replace the former by another package that lets GAP communicate with an external
system using a different technology. So making IO_ForHomalg a package of its own makes it clear
for developers of a new communication method which package of the homalg project has to be
imitated/replaced. To be concrete, Thomas Bächler wrote a package called MapleForHomalg that
enables GAP to communicate with Maple without the need for a terminal interface.

E.2.3 RingsForHomalg

The package RingsForHomalg (which needs HomalgToCAS) provides the details of the black boxes
homalg relies on. The details of the black boxes of course depend on the external computer algebra
system (Singular, MAGMA, Macaulay2, Maple, Sage, ...), but are independent from the way the
communication takes place. So it can be used either with IO_ForHomalg, with MapleForHomalg,
or with any future communication package.

homalg 84

E.2.4 Your own RingsForHomalg

If someone needs to support a ring in some computer algebra system that GAP can already com-
municate with, but where the ring is not supported by RingsForHomalg yet, she or he needs to
imitate/replace RingsForHomalg (as Simon Görtzen did with his GaussForHomalg, where the
computer algebra system was GAP itself, extended by his package Gauss). Any substitute for Rings-
ForHomalg – as it only needs HomalgToCAS – will again be independent from the way how GAP
communicates with the computer algebra system that hosts the ring. This should encourage people to
link more external systems to homalg without being forced to join the development of the package
RingsForHomalg. They can simply write their own package and get the full credit for it.

E.2.5 ExamplesForHomalg

The package ExamplesForHomalg (which needs RingsForHomalg) contains example scripts over
various rings that are written in a universal way, i.e. independent from the system that hosts the
rings. These examples cannot be part of the homalg package as they are defined over rings that GAP
does not support. The package ExamplesForHomalg is meant to be the package where anyone can
contribute interesting examples using homalg without necessarily contributing to the code of any of
the remaining core packages.

E.2.6 Documentation

Splitting the core packages is part of documenting the project. The complete manuals of the homalg
and ExamplesForHomalg packages (maybe apart from the appendices) can then be free from any
non-mathematical technicalities the average user is not interested in. A documentation of the three
packages HomalgToCAS, IO_ForHomalg, and RingsForHomalg will be rather technical and of
interest mainly for developers.

E.2.7 Crediting

Everyone is encouraged to contribute to the homalg project. The project follows the philosophy of
avoiding huge monolithic packages and splitting unrelated tasks. This should enable contributers to
write their own packages (building on other existing packages) and getting the full credit for their
work, which can then be easily distinguished from the work of others.

E.2.8 Stability

A huge monolithic package can never stabilize, even though parts of it will stay frozen for a long
period of time. The splitting makes it likely that parts of the project together with their documentation
quickly reach a stable state.

Appendix F

Overview of the homalg Package Source
Code

The homalg package reached more than 50.000 lines of GAP4 code (excluding the documentation)
before the first release was made. To keep this amount of code tracebale, the package was split in
several files.

85

homalg 86

F.1 The Basic Objects

Filename .gd/.gi Content
HomalgObject objects of Abelian categories

HomalgSubobject subobject of objects of Abelian categories

HomalgMorphism morphisms of Abelian categories

HomalgElement elements are morphisms from “structure objects”

HomalgFiltration filtrations of objects of Abelian categories

HomalgComplex (co)complexes of objects or of (co)complexes

HomalgChainMorphism chain morphisms of (co)complexes
consisting of morphisms or chain morphisms

HomalgBicomplex bicomplexes of objects or of (co)complexes

HomalgBigradedObject (differential) bigraded objects

HomalgSpectralSequence homological and cohomological
spectral sequences

HomalgFunctor constructors of (multi) functors of
Abelian categories,
left derivation of covariant functors,
right derivation of contravariant functors,
left satellites of covariant functors,
right satellites of contravariant functors,
and composition of functors

HomalgDiagram basic diagrams

Table: The homalg package files (continued)

homalg 87

F.2 The High Level Homological Algorithms

Filename .gd/.gi Content
StaticObjects subfactors, syzygy objects, shorten resolutions,

saturations

Morphisms resolutions, (co)kernel sequences

Complexes (co)homology, horse shoe lemma, connecting
homomorphisms, Cartan-Eilenberg resolution

ChainMorphisms (co)homology

SpectralSequences Grothendieck bicomplexes associated to two
composable functors, spectral sequences
of bicomplexes, Grothendieck spectral sequences

Filtrations spectral filtrations, i.e. filtrations induced
by spectral sequences of bicomplexes,
purity filtration

ToolFunctors composition, addition, substraction,
stacking, augmentation, and post dividing maps

BasicFunctors kernel, defect of exactness
OtherFunctors torsion submodule, torsion free factor,

pullback, pushout, Auslander dual

Table: The homalg package files (continued)

F.3 Logical Implications for homalg Objects

Filename .gd/.gi Content
LIOBJ logical implications for objects of an Abelian category

LIMOR logical implications for morphisms of an Abelian category

LICPX logical implications for complexes

Table: The homalg package files (continued)

References

[Bar] Mohamed Barakat. Spectral Filtrations via Generalized Morphisms.
arxiv.org/abs/0904.0240. 26, 68, 69, 71, 73

[BR08] Mohamed Barakat and Daniel Robertz. homalg – A Meta-Package for Homological Algebra.
J. Algebra Appl., 7(3):299–317, 2008. arXiv:math.AC/0701146. 59

[CE99] Henri Cartan and Samuel Eilenberg. Homological algebra. Princeton Landmarks in Math-
ematics. Princeton University Press, Princeton, NJ, 1999. With an appendix by David A.
Buchsbaum, Reprint of the 1956 original. 7

[GM03] Sergei I. Gelfand and Yuri I. Manin. Methods of homological algebra. Springer Monographs
in Mathematics. Springer-Verlag, Berlin, 2. edition, 2003. 7

[HS97] P. J. Hilton and U. Stammbach. A course in homological algebra, volume 4 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1997. 7

[ML63] Saunders Mac Lane. Homology. Die Grundlehren der mathematischen Wissenschaften, Bd.
114. Academic Press Inc., Publishers, New York, 1963. 7

[Rot79] Joseph J. Rotman. An introduction to homological algebra, volume 85 of Pure and Applied
Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York,
1979. 7, 54

[Wei94] Charles A. Weibel. An introduction to homological algebra, volume 38 of Cambridge Stud-
ies in Advanced Mathematics. Cambridge University Press, Cambridge, 1994. 7

88

Index

homalg, 7

Add
to complexes given a matrix, 35
to complexes given a morphism, 35

AffineDimension, 17
Annihilator

for elements, 28
for static objects, 15

AsDifferentialObject
for homalg bigraded objects stemming from

a bicomplex, 49

BettiTable
for complexes, 34

ByASmallerPresentation
for bicomplexes, 46
for bigraded objects, 52
for chain morphisms, 43
for complexes, 36
for morphisms, 25
for spectral sequences, 56

ChernCharacter, 17
ChernPolynomial, 17
CodegreeOfPurity, 16
CokernelEpi

for morphisms, 24
CokernelNaturalGeneralizedIsomorphism

for morphisms, 24
ComposeFunctors

constructor for functors given two functors,
61

ConstantTermOfHilbertPolynomialn, 17
ConstructedAsAnIdeal, 14
CreateHomalgFunctor

constructor for functors, 59
CurrentResolution, 17

DefectOfExactness

for homalg differential bigraded objects, 50
DegreeOfMorphism, 25
DegreeOfTorsionFreeness, 16

ElementOfGrothendieckGroup, 17
EmbeddingInSuperObject, 15
EndomorphismRing

for static objects, 15

FactorObject, 15
FiltrationByShortExactSequence

for complexes, 34
FiniteFreeResolutionExists, 13
FullSubobject, 14
functor_DefectOfExactness, 64
functor_Kernel, 64

GeneralizedEmbeddingsInTotalDefects, 56
GeneralizedEmbeddingsInTotalObjects, 56
Genesis, 62
Grade, 16

HasConstantRank, 14
HilbertPolynomial, 16
HomalgBicomplex

constructor for bicomplexes given a complex
of complexes, 45

HomalgBigradedObject
constructor for bigraded objects given a bi-

complex, 49
HomalgChainMorphism

constructor for chain morphisms given a
morphism, 40

HomalgCocomplex
constructor for cocomplexes given a chain

morphism, 32
constructor for cocomplexes given a com-

plex, 32
constructor for cocomplexes given a mor-

phism, 32

89

homalg 90

constructor for cocomplexes given a object,
32

HomalgComplex
constructor for complexes given a chain mor-

phism, 30
constructor for complexes given a complex,

30
constructor for complexes given a morphism,

30
constructor for complexes given an object, 30

HomalgSpectralSequence
constructor for spectral sequences given a bi-

complex, 54
constructor for spectral sequences without a

special sheet given a bicomplex, 54
constructor for spectral sequences without

bound and without a special sheet given
a bicomplex, 54

constructor for spectral sequences without
bound given a bicomplex, 54

ImageObjectEmb
for morphisms, 24

ImageObjectEpi
for morphisms, 24

ImageSubobject, 24
in

for elements, 28
InsertObjectInMultiFunctor

constructor for functors given a multi-functor
and an object, 59

InstallDeltaFunctor, 65
InstallFunctor, 65
InverseOfGeneralizedMorphismWithFull-

Domain, 25
IsAcyclic, 33
IsArtinian, 13
IsAutomorphism, 23

for chain morphisms, 42
IsBicocomplexOfFinitelyPresented-

ObjectsRep, 44
IsBicomplex, 46
IsBicomplexOfFinitelyPresented-

ObjectsRep, 44
IsBigradedObjectOfFinitelyPresented-

ObjectsRep, 49
IsBisequence, 46

IsChainMorphismOfFinitelyPresented-
ObjectsRep, 39

IsCochainMorphismOfFinitelyPresented-
ObjectsRep, 39

IsCocomplexOfFinitelyPresented-
ObjectsRep, 30

IsCohenMacaulay, 13
IsComplex, 33
IsComplexOfFinitelyPresented-

ObjectsRep, 30
IsCyclicGenerator, 27
IsElementOfAnObjectGivenByA-

MorphismRep, 27
IsEndowedWithDifferential, 52
IsEpimorphism, 23

for chain morphisms, 42
IsExactSequence, 34
IsExactTriangle, 34
IsFinitelyPresentedObjectRep, 10
IsFree, 12
IsGeneralizedEpimorphism, 22

for chain morphisms, 41
IsGeneralizedIsomorphism, 22

for chain morphisms, 41
IsGeneralizedMonomorphism, 22

for chain morphisms, 41
IsGeneralizedMorphismWithFullDomain, 22

for chain morphisms, 41
IsGorenstein, 13
IsGradedMorphism

for chain morphisms, 42
IsGradedObject, 33
IsHomalgBicomplex, 44
IsHomalgBigradedObject, 48
IsHomalgBigradedObjectAssociatedToA-

Bicomplex, 48
IsHomalgBigradedObjectAssociatedToA-

FilteredComplex, 48
IsHomalgBigradedObjectAssociatedToAn-

ExactCouple, 48
IsHomalgChainEndomorphism, 39
IsHomalgChainMorphism, 39
IsHomalgComplex, 30
IsHomalgElement, 27
IsHomalgEndomorphism, 20
IsHomalgFunctor, 59
IsHomalgFunctorRep, 59

homalg 91

IsHomalgMorphism, 20
IsHomalgObject, 10
IsHomalgSpectralSequence, 53
IsHomalgSpectralSequenceAssociatedToA-

Bicomplex, 54
IsHomalgSpectralSequenceAssociatedToA-

FilteredComplex, 53
IsHomalgSpectralSequenceAssociatedTo-

AnExactCouple, 53
IsHomalgStaticMorphism, 20
IsHomalgStaticObject, 10
IsIdempotent, 22
IsInjective, 12
IsInjectiveCogenerator, 12
IsIsomorphism, 23

for chain morphisms, 42
IsKoszul, 14
IsLeftAcyclic, 33
IsMonomorphism, 22

for chain morphisms, 42
IsMorphism, 21

for chain morphisms, 41
IsMorphismOfFinitelyGenerated-

ObjectsRep, 21
IsOne, 22

for chain morphisms, 41
IsProjective, 12
IsProjectiveOfConstantRank, 12
IsPure, 13
IsQuasiIsomorphism

for chain morphisms, 43
IsReflexive, 13
IsRightAcyclic, 33
IsSequence, 33
IsShortExactSequence, 34
IsSpectralCosequenceOfFinitely-

PresentedObjectsRep, 54
IsSpectralSequenceOfFinitelyPresented-

ObjectsRep, 54
IsSplitEpimorphism, 23

for chain morphisms, 42
IsSplitMonomorphism, 23

for chain morphisms, 42
IsSplitShortExactSequence, 34
IsStableSheet, 52
IsStablyFree, 12

IsStaticFinitelyPresentedObjectOr-
SubobjectRep, 11

IsStaticFinitelyPresentedObjectRep, 11
IsStaticFinitelyPresentedSubobjectRep,

11
IsStaticMorphismOfFinitelyGenerated-

ObjectsRep, 21
IsTorsion, 13, 28
IsTorsionFree, 13
IsTransposedWRTTheAssociatedComplex, 46
IsTriangle, 34
IsZero

for elements, 27

KernelEmb
for morphisms, 24

KernelSubobject, 24

LeftDerivedFunctor
constructor of the left derived functor of a co-

variant functor, 61
LeftSatelliteOfFunctor

constructor of the left satellite of a covariant
functor, 60

MorphismAid, 25

NameOfFunctor, 62
NatTrIdToHomHom_R

for morphisms, 15

OperationOfFunctor, 62

ProcedureToReadjustGenerators
for functors, 63

ProjectiveDegree, 17
ProjectiveDimension, 16
PurityFiltration, 16

Range, 23
for chain morphisms, 43

RankOfObject, 16
RightDerivedCofunctor

constructor of the right derived functor of a
contravariant functor, 60

RightSatelliteOfCofunctor
constructor of the right satellite of a con-

travariant functor, 60

homalg 92

Saturate
for ideals, 18

Source, 23
for chain morphisms, 43

SpectralSequence
for bicomplexes, 46

Subobject
constructor for subobjects using morphisms,

12
SuperObject

for subobjects, 15

TheIdentityMorphism, 14
TheMorphismToZero, 14
TorsionSubobject, 14
TotalComplex, 46

UnderlyingComplex, 46
UnderlyingObject

for subobjects, 18
UnderlyingSubobject, 15
UnitObject, 16

ZeroSubobject, 15

	Introduction
	What is the role of the homalg package in the homalg project?
	This manual

	Installation of the homalg Package
	Objects
	Objects: Category and Representations
	Objects: Constructors
	Objects: Properties
	Objects: Attributes
	Objects: Operations and Functions

	Morphisms
	Morphisms: Categories and Representations
	Morphisms: Constructors
	Morphisms: Properties
	Morphisms: Attributes
	Morphisms: Operations and Functions

	Elements
	Elements: Category and Representations
	Elements: Constructors
	Elements: Properties
	Elements: Attributes
	Elements: Operations and Functions

	Complexes
	Complexes: Category and Representations
	Complexes: Constructors
	Complexes: Properties
	Complexes: Attributes
	Complexes: Operations and Functions

	Chain Morphisms
	ChainMorphisms: Categories and Representations
	Chain Morphisms: Constructors
	Chain Morphisms: Properties
	Chain Morphisms: Attributes
	Chain Morphisms: Operations and Functions

	Bicomplexes
	Bicomplexes: Category and Representations
	Bicomplexes: Constructors
	Bicomplexes: Properties
	Bicomplexes: Attributes
	Bicomplexes: Operations and Functions

	Bigraded Objects
	BigradedObjects: Categories and Representations
	Bigraded Objects: Constructors
	Bigraded Objects: Properties
	Bigraded Objects: Operations and Functions

	Spectral Sequences
	SpectralSequences: Categorie and Representations
	Spectral Sequences: Constructors
	Spectral Sequences: Attributes
	Spectral Sequences: Operations and Functions

	Functors
	Functors: Category and Representations
	Functors: Constructors
	Functors: Attributes
	Basic Functors
	Tool Functors
	Other Functors
	Functors: Operations and Functions

	Examples
	ExtExt
	Purity
	TorExt-Grothendieck
	TorExt

	The Mathematical Idea behind homalg
	Development
	Why was homalg discontinued in Maple?
	Why GAP4?
	Why not Sage?
	How does homalg compare to Sage?

	Logic Subpackages
	LIOBJ: Logical Implications for Objects of Abelian Categories
	LIMOR: Logical Implications for Morphisms of Abelian Categories
	LICPX: Logical Implications for Complexes in Abelian Categories

	Debugging homalg
	Increase the assertion level

	The Core Packages and the Idea behind their Splitting
	The 6=2+4 split
	The 4=1+1+1+1 split

	Overview of the homalg Package Source Code
	The Basic Objects
	The High Level Homological Algorithms
	Logical Implications for homalg Objects

	References
	Index

